MATH MODEL EXPLAINS “SIX DEGREES” PHENOMENON

August 25, 2000

SCIENCE & ENGINEERING NEWS

Ithaca, N.Y. — We all know it’s a small world: Any one of us is only about six acquaintances away from anyone else. Even in the vast confusion of the World Wide Web, on the average, one page is only about 16 to 20 clicks away from any other. But how, without being able to see the whole map, can we get a message to a person who is only “six degrees of separation” away?

A Cornell University computer scientist has concluded that the answer lies in personal networking: We use “structural cues” in our local network of friends. “It’s a collective phenomenon. Collectively the network knows how to find people even if no one person does,” says Jon Kleinberg, assistant professor of computer science, who published his explanation in the latest issue (Aug. 24) of the journal Nature.

His research is based on a computer model showing that an “ideal” network structure is one in which connections spread out in an “inverse square”

pattern. In human terms that means that an “ideal” person in the model would have just about as many friends in the rest of the county as in the neighborhood, just as many in the rest of the state as in the county, just as many in the whole nation as in the state, and so on, as you might find in a highly mobile society.

Kleinberg’s answers might have a very practical use in helping to reduce the number of clicks needed when surfing the web, as well as helping to speed up other kinds of networks.

Although Kleinberg has been instrumental in the development of improved search engines for the web, he doesn’t see this work as applying to traditional search engines. They already have the “big picture” of the network, he explains, since they work from indexes of the web. Rather, he sees it being useful in the construction of “agents,” computer programs that will jump around the web looking for specific information.

It could also apply to the distribution of data over the Internet, where computers called routers must send packets of information on their way toward their destinations without knowing what the state of the network is outside of their own immediate neighborhood.

Kleinberg has shown that a computer algorithm (the basic design for a program) can choose the best way to send a message to a faraway place in a network even if it has knowledge only about the characteristics of its immediate neighborhood. “The correlation between local structure and long-range connections provides fundamental cues for finding paths through the network,” he writes in the Nature paper.

Kleinberg’s work is a refinement of an earlier study by two other Cornellians, Steven H. Strogatz, professor of theoretical and applied mechanics, and his graduate student, Duncan Watts, now an assistant professor in Columbia University’s sociology department.

Strogatz and Watts offered a mathematical explanation for the results of a landmark experiment performed in the 1960s at Harvard by social psychologist Stanley Milgram. The researcher gave letters to randomly chosen residents of Omaha, Neb., and asked them to deliver the letters to people in Massachusetts by passing them from one person to another. The average number of steps turned out to be about six, giving rise to the popular notion of “six degrees of separation,” and eventually the “six degrees of Kevin Bacon” game in which actors are connected by their movie appearances with other actors.

Strogatz and Watts created a mathematical model of a network in which each point, or node, is closely connected to many other nodes nearby. When they added just a few random connections between a few widely separated nodes, messages could travel from one node to any other much faster than the size of the network would suggest. The six degrees of separation idea works, they said, because in every small group of friends there are a few people who have wider connections, either geographically or across social divisions. They also showed that such cross-connected networks exist not only between human beings but also in such diverse places as computer networks, power grids and the human brain.

But Kleinberg has found mathematically that the model proposed by Strogatz and Watts doesn’t explain how messages can travel so quickly through real human networks. “The Strogatz-Watts model had random connections between nodes. Completely random connections bring everyone closer together,”

Kleinberg explains, “but a computer algorithm would have only local information. The long-range connections are so random that it [the algorithm] gets lost.”

So Kleinberg designed a model in which nodes are arranged in a square grid and each node is connected randomly to others but with “a bias based on geography.” As a result each node is connected to many nearby, a few at a longer distance and even fewer at a great distance – the “inverse square”

structure. “This bias builds in the structural cues in my long-range connections, and it’s the bias that is implicitly guiding you to the target,”

Kleinberg explains. “In the Strogatz-Watts model, there is no bias at all and, hence, no cues – the structure of the long-range connections gives you no information at all about the underlying network structure.”

The sender of a message in this system doesn’t know where all the connections are but does know the general geographic direction of the destination, and if messages are sent in that direction, Kleinberg says, they arrive much faster than they would by completely random travel.

Kleinberg explains, “The Watts and Strogatz model is sort of like a large group of people who know each other purely through electronic chat on the Internet. If you are given the user ID of someone you don’t know, it’s really hard to guess which of your friends is liable to help you forward a message to them.

“The inverse square model is more like the geographic view of Milgram’s experiment – if you live on the West Coast and need to forward a message to someone in Ithaca, you can guess that a resident of New York state is a good first step in the chain. They are more likely to know someone in the Finger Lakes region, who in turn is more likely to know someone in Ithaca and so forth. Knowing that our distribution of friends is correlated with the geography lets you form guesses about how to forward the message quickly.”

The geographic information on the grid, he adds, is an analogue of the social connections between people. Just as nodes on his simulated network choose the correct geographical direction to send a message, so humans may choose a social direction: A mathematician who wants to send a message to a politician might start by handing it to a lawyer.

On the other hand, he says, “When long-range connections are generated uniformly at random, our model describes a world in which short chains exist but individuals, faced with a disorienting array of social contacts, are unable to find them.” The paper in Nature is titled “Navigation in a Small World.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire