MATH MODEL EXPLAINS “SIX DEGREES” PHENOMENON

August 25, 2000

SCIENCE & ENGINEERING NEWS

Ithaca, N.Y. — We all know it’s a small world: Any one of us is only about six acquaintances away from anyone else. Even in the vast confusion of the World Wide Web, on the average, one page is only about 16 to 20 clicks away from any other. But how, without being able to see the whole map, can we get a message to a person who is only “six degrees of separation” away?

A Cornell University computer scientist has concluded that the answer lies in personal networking: We use “structural cues” in our local network of friends. “It’s a collective phenomenon. Collectively the network knows how to find people even if no one person does,” says Jon Kleinberg, assistant professor of computer science, who published his explanation in the latest issue (Aug. 24) of the journal Nature.

His research is based on a computer model showing that an “ideal” network structure is one in which connections spread out in an “inverse square”

pattern. In human terms that means that an “ideal” person in the model would have just about as many friends in the rest of the county as in the neighborhood, just as many in the rest of the state as in the county, just as many in the whole nation as in the state, and so on, as you might find in a highly mobile society.

Kleinberg’s answers might have a very practical use in helping to reduce the number of clicks needed when surfing the web, as well as helping to speed up other kinds of networks.

Although Kleinberg has been instrumental in the development of improved search engines for the web, he doesn’t see this work as applying to traditional search engines. They already have the “big picture” of the network, he explains, since they work from indexes of the web. Rather, he sees it being useful in the construction of “agents,” computer programs that will jump around the web looking for specific information.

It could also apply to the distribution of data over the Internet, where computers called routers must send packets of information on their way toward their destinations without knowing what the state of the network is outside of their own immediate neighborhood.

Kleinberg has shown that a computer algorithm (the basic design for a program) can choose the best way to send a message to a faraway place in a network even if it has knowledge only about the characteristics of its immediate neighborhood. “The correlation between local structure and long-range connections provides fundamental cues for finding paths through the network,” he writes in the Nature paper.

Kleinberg’s work is a refinement of an earlier study by two other Cornellians, Steven H. Strogatz, professor of theoretical and applied mechanics, and his graduate student, Duncan Watts, now an assistant professor in Columbia University’s sociology department.

Strogatz and Watts offered a mathematical explanation for the results of a landmark experiment performed in the 1960s at Harvard by social psychologist Stanley Milgram. The researcher gave letters to randomly chosen residents of Omaha, Neb., and asked them to deliver the letters to people in Massachusetts by passing them from one person to another. The average number of steps turned out to be about six, giving rise to the popular notion of “six degrees of separation,” and eventually the “six degrees of Kevin Bacon” game in which actors are connected by their movie appearances with other actors.

Strogatz and Watts created a mathematical model of a network in which each point, or node, is closely connected to many other nodes nearby. When they added just a few random connections between a few widely separated nodes, messages could travel from one node to any other much faster than the size of the network would suggest. The six degrees of separation idea works, they said, because in every small group of friends there are a few people who have wider connections, either geographically or across social divisions. They also showed that such cross-connected networks exist not only between human beings but also in such diverse places as computer networks, power grids and the human brain.

But Kleinberg has found mathematically that the model proposed by Strogatz and Watts doesn’t explain how messages can travel so quickly through real human networks. “The Strogatz-Watts model had random connections between nodes. Completely random connections bring everyone closer together,”

Kleinberg explains, “but a computer algorithm would have only local information. The long-range connections are so random that it [the algorithm] gets lost.”

So Kleinberg designed a model in which nodes are arranged in a square grid and each node is connected randomly to others but with “a bias based on geography.” As a result each node is connected to many nearby, a few at a longer distance and even fewer at a great distance – the “inverse square”

structure. “This bias builds in the structural cues in my long-range connections, and it’s the bias that is implicitly guiding you to the target,”

Kleinberg explains. “In the Strogatz-Watts model, there is no bias at all and, hence, no cues – the structure of the long-range connections gives you no information at all about the underlying network structure.”

The sender of a message in this system doesn’t know where all the connections are but does know the general geographic direction of the destination, and if messages are sent in that direction, Kleinberg says, they arrive much faster than they would by completely random travel.

Kleinberg explains, “The Watts and Strogatz model is sort of like a large group of people who know each other purely through electronic chat on the Internet. If you are given the user ID of someone you don’t know, it’s really hard to guess which of your friends is liable to help you forward a message to them.

“The inverse square model is more like the geographic view of Milgram’s experiment – if you live on the West Coast and need to forward a message to someone in Ithaca, you can guess that a resident of New York state is a good first step in the chain. They are more likely to know someone in the Finger Lakes region, who in turn is more likely to know someone in Ithaca and so forth. Knowing that our distribution of friends is correlated with the geography lets you form guesses about how to forward the message quickly.”

The geographic information on the grid, he adds, is an analogue of the social connections between people. Just as nodes on his simulated network choose the correct geographical direction to send a message, so humans may choose a social direction: A mathematician who wants to send a message to a politician might start by handing it to a lawyer.

On the other hand, he says, “When long-range connections are generated uniformly at random, our model describes a world in which short chains exist but individuals, faced with a disorienting array of social contacts, are unable to find them.” The paper in Nature is titled “Navigation in a Small World.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire