SANDIA COMPUTER TEAM ACHIEVES SUPER RESULTS

August 25, 2000

FEATURES & COMMENTARY

Albuquerque, N.M. — John Fleck reported for the Albuquerque Journal that the greetings rolled down Rolf Riesen’s computer monitor like the cry of a baby’s birth. “Hello from compute node 0/102,” the first line of text read, a huge new computer’s announcement to the world that it was alive. “It’s born, right? The baby is born,” Riesen said, pointing to the computer screen in his Sandia National Laboratories office. One after another, nodes 0/102 through 7/102 bleated out their hello, pieces of a massive new supercomputer coming to life. It’s a computer like none ever built before.

Each “node” would be a muscular desktop computer on its own. Wired together, 600 of them could be more powerful than any other computer like it in the world. It’s called “Cplant,” which is short for “computational plant,” a sort of factory for computing. In a world where overheated computer hype has become the norm, Riesen and his colleagues knew from the beginning that this machine truly could be exceptional – if they could make it work.

Supercomputers have become a central tool for scientists today in studies ranging from climate change to genetics to, in Sandia’s case, nuclear weapons design. Keeping those scientists supplied with the computer power they crave has become a major challenge. It’s a challenge the group of Sandia computer scientists has risen to repeatedly in the last decade. “It’s fun,” Riesen said. “This is one of the reasons we work here. There’s not many places where they toss 600 nodes at you and say, ‘Here, make it work.’ ”

“Make it work” could be the slogan of the Scalable Computing Systems group.

“We build the biggest machines and we’ve always built the biggest machines,”

said University of New Mexico computer science professor Barney Maccabe, a consultant to the lab and long-time member of the team. Since 1993, Sandia has repeatedly come to the team with the same problem: Take a pile of blazing fast computer hardware and write the software plumbing to turn it into a well-oiled machine. Three times in the last decade the group has succeeded doing what few others can claim, turning those piles of hardware into the fastest computer in the world.

Ask Tramm Hudson what attracts him to computer programming: “We’re building things out of pure thought.” When it comes to making a supercomputer, the things you can see – the cabinets and cables and flashing lights – are less important than the complex architecture of software that goes inside it. Which is where Hudson, the young Wunderkind of the Scalable Computing Systems group, comes in. Hudson is a 1998 Tulane University graduate, but he began working on Sandia supercomputers when he was in high school. Until he recently left for a job in private industry, Hudson was one of the key programmers responsible for making the new Cplant computer go. Slouching in a computer-filled lair on the southern edge of Sandia, Hudson pecked away at a computer keyboard recently, “writing code” while his colleagues tried to explain the joy of programming.

Ron Brightwell, another of the young programmers on the project, had been writing reports instead of code lately, and he clearly didn’t like it. “You go through withdrawal after a while,” the 31-year-old Brightwell said. “That’s what we like doing.” Programming involves writing a series of instructions for a computer to perform, in an arcane language peppered with “if’s” and “or’s”

that demands a rare kind of precision. When you do it right, Riesen said, there is joy in seeing the computer do what you told it to. “You get a result back,” Riesen said. “It actually spits something back.” Hudson looked up from his computer to join the conversation, to explain the challenge. “With code, it really requires a level of perfection that is unmatched in any other endeavor,” he said.

Barney Maccabe remembers the day the Sandia team got started. It was January 1991, the day the bombs started dropping on Baghdad and the Persian Gulf conflict with Iraq turned from a holding action into a war. Maccabe and a bunch of other scientists gathered at Sandia to discuss a new project – making a massively parallel supercomputer work.

In the early days of supercomputers more than 20 years ago, companies like the famed Cray built big boxes. Driven primarily by the needs of nuclear weapon designers, the supercomputers did their magic by using a small number of ever-faster computer chips. But there was little commercial market for that kind of machine, making the few that were built incredibly expensive.

By the early 1990s, the cost of desktop computers was dropping fast, and supercomputer makers were looking for ways to accomplish their goal by wiring together a bunch of cheap chips and getting them to work together.

“Ultimately,” Maccabe said, “you do the best you can with whatever’s cheap.”

The job Maccabe and his colleagues faced: How do you get all those chips talking together quickly and efficiently, so computer chips aren’t sitting idle, waiting for a message they need to continue? “‘How good is your network?’ is the issue,” Maccabe explained.

In the years since, the Sandia team has solved the problem again and again, with a series of computers that were, for their time, at the pinnacle of the art. First it was nCUBE 2, then the Paragon, then a machine affectionately dubbed “the t-flops,” and now the new machine taking place behind Sandia’s security fences called Cplant.

Ask Barney Maccabe about the obscure workings of message passing in a supercomputer and his eyes light up. “I should warn you, you’re close to becoming a fly approaching the spider’s web,” he said. “This is one of the things I could spend days or weeks talking about.” Maccabe’s second-floor UNM office is remarkably barren of computers for a computer scientist’s den – just a laptop on a desk. The real action is on an erasable white board on the wall.

To illustrate a point, the 45-year-old hockey-playing professor jumps up to draw squares with lines connecting them. The squares represent pieces of a computer, and the lines are networks connecting them. Getting a message from one part of the computer to another is the key to making the machine fast enough. That’s the heart of the problem Maccabe and the other members of the Cplant team have been grappling with for the last three years.

For an idea of the practical problems of turning ideas into humming silicon, look at a little piece of hardware Rolf Riesen keeps in one of his desk drawers. It’s a computer circuit board no larger than a videocassette. Each of the supercomputer’s nodes has one of these “network cards,” which act as the node’s voice box and ears as it talks with the rest of the supercomputer. “The machine has 600 of these,” Riesen said, holding the little card in his hand.

It’s the sort of thing that has to work perfectly in the background for Sandia’s researchers using the computer to get their work done, but they don’t want to think about it. “This is the plumbing under the sink,” Riesen said.

“Most of the users don’t know this card even exists. They could care less.”

April was ugly for the team of Sandia National Labs programmers trying to make the giant Cplant supercomputer work. In a machine this big and complex, a tiny bug can be the hardest to catch. “This one was real nice,” said Ron Brightwell, sarcasm in his voice. Every so often, a researcher running one of the massive calculations that are Cplant’s bread and butter would lose one tiny bit of data. If they were lucky, their program would crash. If they were unlucky, they’d get a tiny mistake in their calculation, throwing off the results without anyone realizing it. It was maddeningly difficult to solve because it didn’t happen all the time. “It was an intermittent thing,”

Brightwell said.

In retrospect, he said, it’s clear the problem had been lurking since a very early version of their software, running on an older computer in late 1997 or early ’98. In that mass of data zipping among the machine’s many nodes, a single bit of data would occasionally arrive incorrectly, Hudson said. But it happened so rarely that it was a nightmare to diagnose. Layer by layer the team peeled down through the code, adding tests to debug the program in search of the answer.

And then one day, Hudson saw it – a piece of software touching data that it wasn’t supposed to, corrupting it in the process. A race between good data and bad data was going on, and on very rare occasions, the bad data would win.

“Many things are happening at once and the bug depends on certain, precise timing of them to occur,” Hudson explained. It was the sort of thing that was hard to see at the time, but seems obvious now. “Once I realized what the code was doing, I had a bit of an epiphany,” Hudson recalled. “It was blindingly obvious to Tramm,” Brightwell said.

Once Hudson found the blindingly obvious, it was clear that the Scalable Computing Systems group really had finally made Cplant work. The computer was placed in service this summer, made available for Sandia scientists to do their computations. But the supercomputers are a “What have you done for me lately” world. For a decade, the work of the Scalable Computing Systems group has been like Sisyphus, a character from Greek mythology condemned to forever roll a heavy stone up a hill, only to have it roll down again. Building a fast computer – Cplant is the fastest machine of its kind in the world – is never enough. Next year, a faster one is needed.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This