THE EVOLUTION OF THE NT SUPERCLUSTER

August 25, 2000

by Karen Green, NCSA Science Writer

San Diego, CA — Two years ago NCSA had its first success running scientific code on a brand new hardware platform called the NT supercluster – a collection of high-end, commodity PCs running the Windows NT operating system and linked together with a fast network to operate at supercomputer performance levels.

Since then the supercluster has evolved and now serves a variety of NCSA and Alliance users. Between February 2000, when the NT supercluster changed from friendly user to production mode, and May 2000 26 allocations of CPU time were granted on the cluster. The supercluster runs a variety of scientific Message Passing Interface (MPI) codes at performance levels that are comparable to, and sometimes even better than, performance levels achieved on more conventional supercomputers.

After the transition to production mode, utilization of the supercluster quickly rose to about 30 percent. That figure should double in the next few months, as more scientists are granted allocations on the system, according to Rob Pennington, head of the Alliance NT cluster development team at NCSA.

“That’s a very good start for production, and that figure will undoubtedly go up as more researchers are granted time on the cluster,” he adds.

At present the supercluster consists of more than 400 processors. A cluster of 288 Intel processors in 144 compute nodes (with one compute node equal to one dual-processor machine) is available to the scientific user community. A total of 256 of those processors – 128 Hewlett-Packard machines with dual 550-MHz Intel Pentium III Xeon processors – are capable of running MPI codes using Myricom’s Myrinet interconnect and software called High Performance Virtual Machine (HPVM). HPVM was developed by Andrew Chien and the Concurrent Systems Architecture Group at the University of California, San Diego. MPI codes are those that allow communications among multiple systems, making distributed computing possible. The majority of distributed scientific codes utilize MPI for message passing.

Thirty-two 333-MHz Intel Pentium II processors are available to run serial codes. The remainder of the supercluster’s processors are used for testbeds that look at a range of infrastructure and development issues and performance and portability with different interconnects and operating systems.

Codes that run on the supercluster include the MIMD Lattice Calculation (MILC), a parallel code used for lattice quantum chromodynamics (QCD) simulations. The MILC collaboration, led by Bob Sugar of the University of California at Santa Barbara, includes physicists from nine universities working on a Department of Energy Grand Challenge Initiative that involves using parallel computing to model QCD. The MILC code was easily ported to the NT supercluster. Since the supercluster entered production mode, MILC researchers Doug Toussaint and Kostas Orginos of the University of Arizona have used more hours on the cluster than any other allocated project to date.

Other codes that have been successfully ported to the supercluster include GMIN (chemistry), OVERFLOW (aeronautical fluid dynamics), Cactus (general relativity), ZEUS-MP (astrophysics), Tree Particle Mesh (cosmology), ARPI-3D (weather research), a Quantum Monte Carlo materials science code, and a polymer research code.

One of the cluster testbeds focuses on cluster middleware called Virtual Machine Interface (VMI), developed by NCSA cluster team member Avneesh Pant.

VMI, unlike HPVM, makes it possible for applications to run on a cluster using different types of interconnects to communicate among processors. VMI also allows MPI applications to run between clusters, including those using different operating systems. The team has successfully run the MILC, Cactus, and ARPI-3D applications across multiple clusters, including heterogeneous clusters running Windows NT and Linux.

“Without VMI a scientist who has compiled an application on a cluster using Myrinet would have to recompile that code to use with a different cluster, such as one that had only Ethernet,” says Pant. “If you compile your MPI code for systems that use the VMI layer, it will run on other types of clusters or on multiple clusters. In other words, you could have just one executable that could run on any NT cluster on the Grid, and it could also be part of a larger computation that includes a Linux cluster or other NT clusters.”

The development of VMI was a consequence of the need to do performance testing on clusters, says Pennington. VMI works as middleware that allows MPICH – a tool developed by Argonne National Laboratory that implements MPI on most computer systems – to work transparently across the different interconnects and systems in the supercluster testbeds. MPICH is the standard for implementing MPI on most high-end computing systems, although it is often fine-tuned to the characteristics of specific computing systems. VMI allows the cluster team to tune MPICH to the supercluster environment. In addition VMI allows machines with different operating systems to work together on an application with just a simple recompilation for each operating system.

“We now have a common layer of middleware for MPI applications, so we can make direct comparisons among clusters running various applications, ” says Pennington. “As a result, we can get a better idea of the performance of specific codes on different cluster systems.”

The ability to run applications on multiple clusters using different interconnects and operating systems is important as the Alliance continues to develop the concept of computing on the Grid. The PACI Grid – an experimental system that links high-speed hardware and cutting-edge applications into an efficient, persistent infrastructure – is being built by the Alliance. This Virtual Machine Room gives researchers remote access to any of the Alliance’s computing resources regardless of physical location and lets resources at different locations work together as one seamless system.

“This type of technology, which can bridge multiple clusters using multiple interconnects to create a seamless system is important to the concept of Grid computing,” says Pennington. “Clusters are built from commodity components, and since no single vendor supplies all the components, it is unlikely that a particular interconnect will become the standard for clusters.”

The VMI middleware addresses this reality and at the same time makes the computational scientist’s job easier. It is another step in the supercluster’s journey from experimental system to one of the main computing platforms offered to scientific users by the Alliance.

This project is supported by the National Computational Science Alliance, with additional support from Microsoft Corp., Intel Corporation, and Myricom.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire