BIGGER BETTER FASTER: HERE COMES INTERNET2

September 1, 2000

SCIENCE & ENGINEERING NEWS

San Diego, CA — Remember 8-track? Richard M. Stapleton reports that in a few years, that’s how we’ll recall today’s Internet. Internet2, bigger, better, faster – and for now, very exclusive – is just over the virtual horizon, transmitting prodigious packages of data in real-time with little or no degradation. And while researchers are putting Internet2 to the test, theorists are already visualizing Internet3.

It seems that history is repeating itself. The Internet we use today was originally created so government defense agencies and their research university partners could readily share information. But with the advent of commercial and individual use, the Internet has doubled in size and traffic has increased fourfold annually since 1988. Like any aging super-highway, traffic slowed, and the Web’s utility to the research community was compromised. It was time to reinvent the Net.

The challenge was twofold: Build a better Web, and design applications that could fully exploit it. The university-led Internet2 consortium, which now includes nearly 180 campuses, and the federally led Next Generation Internet Initiative, joined by key commercial partners, began work in 1998. In a sense, the old team has come back together. “We are recreating the same kind of partnerships and environment that gave us the Web we use today,” says Internet2 President and Chief Executive Douglas Van Houweling.

Capacity. Capacity. Capacity. It all starts with capacity. NGI’s goal was to create network test-beds that would be 100 to 1,000 times faster than today’s Internet. What does that mean? Well, the Encyclopaedia Britannica DVD 2000 Edition contains 4.5 gigabytes of data. If you connect from home at 56 kilobits per second, it would take you nearly eight days to download EB. If you’re at a research university, tied to today’s Internet, your download time could be just under 14 minutes. On NGI’s 100X test-bed, you’re looking at about 1 minute download time, and on a 1000X Web, the full EB can be yours in just 15 seconds.

From vision to reality took less than two years. Through a cooperative agreement with the National Science Foundation, WorldCom linked several dozen universities to a 100X test-bed in 1998 and by the end of 1999, vBNS, its very high-performance backbone network service, was in full operation, linking nearly 200 campuses. Meanwhile, Defense’s Advanced Research Project Agency has successfully fielded an all-optical 1000X test-bed linking 20 sites on the two coasts.

What’s being transmitted? The applications being tested are as mind-popping as the Web that’s carrying them: Fourteen thousand feet above the beaches of Hawaii, 11 international astronomical observatories atop Mauna Kea are tied to the Net. Via the new Web, an astronomer in Amsterdam can remotely manipulate a telescope, study a distant nebula, and then participate in an international videoconference to discuss his or her findings.

“This advances the level of scientific inquiry beyond what is possible on-site alone,” says David Lassner, director of information technology at the University of Hawaii. And benefits go far beyond convenience; astronomers no longer must work in the oxygen-poor atmosphere at the observatories’ high altitude. Future plans call for Webcasting the deep-sky pictures so anyone can have a real-time look.

Put on a pair of special glasses and enter “The Cave” at the University of Illinois at Chicago’s Electronic Visualization Laboratory. 3-D images of a table pop out at you. A computer tracks your movement, letting you walk around the table, viewing it from all sides. You can even get on your knees and peer under it. Auto designers already use caves to study new car designs. Unlike the old clay model, design changes can be as simple as a few mouse clicks. The next Internet will tie caves together, letting designers in Germany, for instance, critique a sports car being displayed in Detroit.

3-D imaging is being used at the San Diego Supercomputer Center to “molecule scenes,” where 3-D images can be manipulated, made interactive and shared on the Web via a collaboration server.

The University of Pennsylvania is exploring virtual microscopy, linking high-power electron microscopes to the Web, allowing a doctor to seek a second opinion from experts anywhere in the world. A second project is creating an electronic archive of digital mammograms, available for transmittal and study anywhere in the world. “The effect of this,” says Michael Palladino, associate vice president of networking and telecommunications at Penn, “will be to spread high-tech medical specialization far beyond the urban or university center.”

Indiana University music students can now hear the performances associated with their course work on computer. IU, which has the largest music school in the nation, has digitized its entire music library. Jon Dunn, manager of digital library operations and development, says the new Net can make such libraries available to students worldwide.

Students, in general, stand to benefit. Northwestern University students will be able to send and receive video from their dorm rooms by this fall. Marteza A. Rahimi, vice president of information technology, says this will let engineering students continue work on design projects from their rooms, while marketing students can view archived TV commercials being studied in class. The next step could easily be to make course materials available to the vast world of distance learning.

The universities, aware that Worldcom would likely take vBNS commercial once federal funding expired, quickly began building a parallel Web, called Abilene, after the 19th-century railhead that opened the West for settlement. Built by a partnership with Cisco Systems, Nortel Networks, Qwest Communications International and the University of Indiana, Abilene today links nearly 180 research facilities with a 2.4-gigabit-per-second fiber-optic cable. Abilene’s structure looks like an airline service map; the universities are linked in regional networks that connect to the main Web at gigabit portals (called gigaPoPs), much like feeder airlines connecting at hub-city airports.

Internet2 spokesman Greg Wood is quick to point out that there’s much more to the new Web than just capacity. “Bandwidth within a network is easy,” he says. “The difficulty is getting consistent performance across multiple networks. That’s what I-2 is working on.” Data does not flow in an unbroken stream on the Internet; it is sent in packets that are reassembled at the user’s end. Like the 8-track of old that split songs mid-tune, the current Internet can leave some annoying holes when reassembling streamed data.

I-2 is researching what it calls “quality of service,” some way to guarantee seamless delivery of priority transmissions. A collaborative medical procedure, for instance, should not be interrupted by e-mail traffic. One thought is to create a premium service, where critical data would be tagged so that routers would pass it through first, much the way railroads clear the tracks for express trains. I-2’s goal is to guarantee 30-frame-per-second synchronized video across multiple networks without delays, jerkiness or dropped frames.

The creation of Abilene allows, for the first time, large-scale implementation of the next generation of Internet Protocol. It’s no small deal. IPv6 – we’re using IPv4 now – blows through the ceiling on Internet expansion. Every device that’s connected to the Internet has a unique numerical address. Problem is, we’re running out of numbers. When phone companies faced a similar problem, they added area codes and people found themselves dialing 10 digits to call their neighbor. The IPv6 solution is the same; add more digits to the address. The new scheme expands exponentially the number of devices that can be connected, anticipating the day when air conditioners, heating systems, even lights and the microwave are all connected.

Of more immediate concern, IPv6 allows mobile devices – your cell phone, a GPS receiver in your car, perhaps even your wristwatch – to retain its unique identity while connecting to the Web from anywhere in the world. Think of it as being able to take your telephone number with you wherever you might move.

IPv6 also opens the door to multicasting, the capability for one-to-many communication, much like cable television. The present Internet “unicasts”: Person A sends information to Person B, who then sends it to Person C. Each communication is a separate transaction. It’s like working the pay phone outside the delivery room, calling each family member with the good news. Multicasting, far more efficient, is like setting up a conference call and telling everyone, “It’s a girl!”

Multicasting is what will let astronomers around the world peek through the Mauna Kea telescopes.

The work of I-2 and NGI is not so much parallel as it is interwoven. “We’ve been working hand-in-hand since the beginning,” says Heather Boyles, I-2’s director of government and international relations. A joint engineering team meets monthly to ensure coordination between projects, and federal agency representatives sit on I-2’s many specialized workgroups. Many, perhaps most, of the key research universities are affiliated with both I-2 and NGI. Federal funding, in the form of National Science Foundation grants, supports a big chunk of their research and development, and dozens of universities are developing joint NGI/I-2 applications using federal grant money.

“The federal role is to look far into the future,” says Sally Howe, associate director at the National Coordination Office for Computing, Information and Communications, “and then support development of the technologies needed to fill those needs.”

Both Abilene and vBNS are domestic Webs, but that’s not to say the rest of the world is standing still. “We have formal relationships with over 30 organizations in other countries,” says I-2’s Boyles. “These are agreements to promote applications collaboration as well as to get [an international] backbone in place.” Abilene and vBNS are already interconnected with nearly a dozen second-generation networks in Europe and Asia.

100X, 1000X, gigaPoPs: What does all this mean for the rest of us? “Convergence of services, for one,” says I-2’s Wood. “Television, radio, telephone; these and more will all be coming to us over the Net.” I-2’s Van Houweling predicts that within three years, people will be routinely watching TV on the Internet. And the Web will quickly become a collaborative tool. Experiments with 3-D virtual worlds and virtual laboratories foretell scenarios ranging from collaboration on medical procedures to virtual family reunions. “Today’s Web is used primarily to reach out for information,” Van Houweling says. “Tomorrow’s Internet will be used to reach out to people and work with them.”

But no one really knows what’s next. “As was the case with e-mail and the Web in the first cycle of Internet development,” he says, “we fully expect that we’ll soon see capabilities we haven’t yet imagined.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This