THE ULTIMATE LAPTOP: A BLACK HOLE

September 8, 2000

FEATURES & COMMENTARY

New York, N.Y. — George Johnson reports that for all the corporate enthusiasm over the unveiling of each new generation of computer chip (last month Intel announced that its Pentium 4 would be packed with 42 million transistors performing as many as 8.4 billion operations per second), consumers may be more apt to feel a sense of dread. Once again the expensive desktop computers and laptops they were so proud of have become outmoded, destined to join the scrap piles of unsalable equipment accumulating in closets everywhere.

Moore’s law, which holds that computing power doubles approximately every 18 months, sometimes seems less a blessing than a curse. But the law cannot hold forever, and Dr. Seth Lloyd, an associate professor of mechanical engineering at the Massachusetts Institute of Technology, offers hope that the end is in sight.

In a paper in the current issue of Nature, Dr. Lloyd describes the ultimate laptop – a computer as powerful as the laws of physics will allow. So energetic is this imaginary machine that using it would be like harnessing a thermonuclear reaction. In the most extreme version of this computer supreme, so much computational circuitry would be packed into so small a space that the whole thing would collapse and form a tiny black hole, an object so dense that not even light can escape its gravity.

If that sounds like a rather dangerous device to hold on one’s lap – “Opening the lid,” Dr. Lloyd warns, “voids the warranty” – there is a serious purpose to his theoretical tour de force: to plumb the absolute limits nature sets on computation.

Nothing like Lloyd’s Ultimate Laptop is likely to roll off the assembly line at some future Apple or I.B.M.

But his effort, part of a relatively new discipline called the physics of information, gives computer engineers an ideal to aim for. More importantly, this exercise in extreme computer science may help deepen the understanding of the connections between physics and information, and explore the notion, popular among some theorists, that the very processes of nature can be thought of as computations.

“Work like this exemplifies a fruitful new convergence of theoretical physics, computer science and mathematics,” said Gregory Chaitin, a researcher at the I.B.M. Thomas J. Watson Research Center in Yorktown Heights, N.Y., whose specialties include the mathematics of information. “Interdisciplinary research of this kind would have been unthinkable a few years ago.”

Named for its inventor, Gordon Moore, a founder of Intel, Moore’s law has continued to hold true because of the dexterity with which engineers have been able to inscribe smaller and smaller circuitry onto silicon computer chips. As the components of the circuits are squeezed closer together, they can exchange information at faster speeds.

“People have been predicting the demise of Moore’s law pretty much since it was posited in the early 60’s because some manufacturing technology was about to run out,” Dr. Lloyd said. “But Moore’s law is a law of human ingenuity rather than of nature. Predictions of its demise have been wrong because people are ingenious.”

The vanishingly tiny components on a chip are like switches that can be in two positions, either on or off – representing a bit of information, 1 or 0. Minuscule as they seem, each of these devices is typically made of about a billion atoms. But laboratories are already experimenting with computers in which a bit is stored by a single atom that can spin clockwise for 1 or counterclockwise for 0. And who is to say that the grain could not someday be even finer with subatomic particles like quarks or gluons or even the hypothetical superstrings harnessed to encode and manipulate information?

But ultimately the limits of nature must prevail. “If we believe the laws of physics,” Dr. Lloyd said, “then the fundamental constants of nature should tell us where Moore’s law absolutely has to end, where we can’t miniaturize any further.”

Dr. Lloyd approached the problem like a consumer in the market for a new laptop. “If you’re going out to buy a computer,” he said, “you have two basic questions: how fast is it and how much memory space does it have?” Those are the ingredients of computing power. He assumed that his laptop would have about the same dimensions as a contemporary one, weighing a kilogram, 2.2 pounds, and occupying one liter of space.

First he set out to determine how fast his ultimate laptop could compute. The limiting factor is energy: the faster a computer runs, the more voracious its appetite. So what would be the maximum possible energy available to a portable machine?

One could speculate endlessly on the future of battery technology. Seeking a more fundamental answer, Dr. Lloyd looked to Einstein’s special theory of relativity.

If every particle of the laptop’s kilogram of mass is converted into energy according to the equation E=mc2 , the answer is 8.9874 x 1016 joules – or in more familiar terms, 25 million megawatt-hours, the amount of energy produced by all the world’s nuclear power plants in 72 hours.

“The machine would be cannibalizing its own mass to perform its operations,” Dr. Lloyd mused. No engineer from Eveready or Duracell could ever squeeze more juice from a chunk of matter.

There would be obvious practical considerations to controlling (and computing with) what would amount to thermonuclear fusion. (Dr. Lloyd speculated that the computer’s “circuitry” might consist of electrons and antimatter positrons, signaling each other with gamma rays.) But the details are unimportant. Ultimate computer science is not about what is probable but what is possible. The rest can be left to the engineers.

The next step was to determine the maximum speed one can get from all that energy – how rapidly the little switches can be flipped between 1 and 0, carrying out their calculations.

Here Dr. Lloyd turned to quantum mechanics. One of the quirky rules governing the behavior of subatomic particles is Heisenberg’s uncertainty principle, which, among other things, specifies a simple relationship between time and energy. To compute switching speed, one multiplies pi by a number called Planck’s constant and divides by twice the available energy. Applied to the ultimate laptop, the answer is 5.4258 x 1050 operations per second – about 10,000 trillion trillion trillion times speedier than the Pentium 4. A computer that fast could never be obsolete – not in this universe.

These limits would hold true no matter what kind of technological breakthroughs lie ahead. “It doesn’t matter whether you’re computing with vacuum tubes or transistors or using quarks and gluons or something even more exotic like superstrings,” Dr. Lloyd said.

Relativity and quantum mechanics promise that is as fast as the ultimate laptop can be.

Nor does it matter how the computer is designed. The energy can be used to power one extremely fast processor or many slower ones. Either way, the maximum possible number of operations per second is the same.

Now that he had put an upper limit on speed, Dr. Lloyd wanted to see how big he could make the machine’s memory – how many bits of information could be stored and manipulated at those blazing speeds. Every atom or even every electron could be used to register a 1 or a 0, depending on which way it was spinning. But to store the maximum amount of information, the little processors would have to be free to assume as many different states as possible. At intense energies, information might be encoded not just by the spin of a particle but also by the speed and direction in which it was moving inside the machine.

“In order to take full advantage of the memory space available, the ultimate laptop must turn all its matter into energy,” Dr. Lloyd said.

“A typical state of the ultimate laptop’s memory looks like a thermonuclear explosion or a little piece of the Big Bang! Clearly, packaging issues alone make it unlikely that this limit can be obtained, even setting aside the difficulties of stability and control.”

An object like this, so packed with energy that its particles are as free as they can possibly be, is said to be in a state of maximum entropy. Though more commonly thought of as a measure of disorder – a vaporized laptop being less orderly than one at room temperature – entropy is also intimately related to information. The higher an object’s entropy, the greater the number of different states its particles can assume, and the greater the amount of information it can store.

For the ultimate laptop, the maximum entropy corresponds to an information capacity of about 2.13 x 1031 bits – a billion trillion times more than today’s laptops.

Achieving so vast a memory might not be as unrealistic as it sounds. In a kilogram of matter there are approximately 1025 atomic nuclei, each of which could store a bit without vaporizing the entire mass. “One can get quite close to the ultimate physical limit of memory without having to resort to thermonuclear explosions,” Dr. Lloyd said.

Until this point, Dr. Lloyd had been constraining himself to a laptop with a volume of one liter. If he could make it even smaller, he knew, he could pack the kilogram of particle-size components even tighter, speeding up the information flow and shortening the time it takes to do long, step-by-step calculations. He would be sacrificing memory (there would be less room to store information) for speed.

So in the final act of his thought experiment, he programmed the ultimate laptop to solve a formidable problem (cracking a secret code or something like that) and imagined it shrinking and shrinking – to the size of a wallet, then a credit card, then a postage stamp. Smaller and smaller until its radius is a mere centimeter (10-2 meters), then a millionth of a meter (10-6 ), then a billionth (10-9 ).

When the laptop has shrunk to 10-27 meters (a billionth the size of a proton), it crosses what is called the Schwarzschild radius: So much mass is packed into so little space that the whole thing collapses, sucking itself into a tiny black hole.

Some people may be convinced that they already have a black hole laptop, imploding at the worst possible moments and irretrievably swallowing data.

Owning the real thing would surely be even worse. According to some theories, however, information thrown down a black hole does not disappear, but is displayed on the hole’s surface. Each pixel of this screen would occupy one square Planck length, 10-35 by 10-35 square meters, the smallest area conceivable by the laws of physics.

Some theorists, in fact, believe that the information about everything that falls into any black hole is projected in this manner – that each one of these sinkholes is, in a sense, processing information.

Viewed this way, exercises like Dr. Lloyd’s could have implications for physics and cosmology.

“I would hope that the long-term consequence of this work is not building a black hole computer, which would be a dangerous thing to do,” Dr. Lloyd said, “but seeing whether we can understand how nature itself processes information.”

If particles trade bits of data as readily as they trade energy, then the universe itself is the ultimate computer. And physics is a matter of deciphering its program.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This