ORNL SUPERCOMPUTER HELPS SHED LIGHT ON FUSION

September 15, 2000

SCIENCE & ENGINEERING NEWS

Oak Ridge, TENN. — Some of the secrets to achieving fusion energy may be unlocked by calculations developed by researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) and run on the lab’s supercomputer.

Fusion energy, evident in the sun and stars, is the ultimate source of power because it provides an environmentally acceptable alternative to energy generated by fossil fuels. The work of Fred Jaeger and Lee Berry of ORNL’s Fusion Energy Division is significant because it enables scientists to better understand radio waves in the plasma that would be at the heart of a fusion power plant.

“Our research is allowing us to study the high-power radio waves we use in fusion research experiments,” Jaeger said. “This newly gained knowledge should help us get a clearer picture of the physics of the heating system and control for a fusion machine.”

One of the techniques used to transform the fuel into the plasma state needed for fusion is to use intense electromagnetic waves, much as a microwave oven heats food. But because instruments cannot be placed inside plasma, which is more than 500 million degrees Fahrenheit, experimental measurements on the waves used for heating must be indirect.

“It’s essential to have a good theoretical understanding of the wave behavior and to be able to calculate it accurately,” Jaeger said. “But computing these waves is difficult because the particles are so hot they move at almost the speed of light. This motion makes it difficult to calculate how the plasma particles will respond to the wave and how much electric current they will produce.”

Until now, researchers wanting to calculate the effects of radio waves in plasma have been forced to either ignore the variation of the plasma in all but one direction or consider just waves having long wavelengths and low frequencies.

“The first choice, treating the plasma as one-dimensional, is akin to adopting tunnel vision,” Berry said. “The wave is computed along a single line through the plasma, but we don’t get a picture of what is occurring in the whole plasma cross-section.”

The second choice, Berry said, eliminates from consideration many of the wave processes that are of most importance in today’s fusion experiments that require high frequencies and can have very short wavelengths.

With the technique developed at ORNL, they can compute plasma waves across an entire plasma cross-section. It does not require any restriction on wavelength or frequency.

“With this approach, the limit on attainable resolution comes not from the theory, but from the size and speed of the available computer required to solve the enormous sets of equations,” Jaeger said.

Working with Ed D’Azevedo of ORNL’s Computer Science and Mathematics Division, Jaeger and Berry have developed a computer program to solve the equations that take advantage of the massively parallel structure of modern supercomputers.

They obtained the first high-definition picture in two dimensions of a donut-shaped fusion device called a tokamak for a process called “mode conversion.” In this process, researchers inject radio waves from outside the device. At a certain location, the waves suddenly change character to a different type of wave having very fine scale structure and are absorbed by the plasma.

The solutions were obtained running on ORNL’s 1 trillion operation-per-second (teraflop) IBM RS/6000 SP supercomputer, which with Berry and Jaeger’s program achieved speeds of 650 billion operations per second.

“These calculations are considered to be a breakthrough for wave studies in fusion machines,” said Don Batchelor, section head of the theory group in the Fusion Energy Division.

The new computer program provides high-resolution pictures that clearly detail the formation of the short wavelength structures and how the various waves propagate, reflect and are absorbed in the plasma. Researchers expect the new technique to be useful to much more complex plasma shapes than the tokamak type used in this experiment.

In the quest for fusion, scientists have attained a number of important milestones. They have achieved temperatures as high as 520 million degrees, more than 20 times the temperature at the center of the sun. And more than 16 million watts of fusion power have been produced in the laboratory. Their next tasks are to demonstrate sustained reactions that produce substantial amounts of energy and to build and demonstrate a fusion power plant. The ORNL work will contribute to the application of waves for sustaining and controlling fusion plasmas.

The research is funded by DOE. ORNL is a DOE multiprogram facility operated by UT-Battelle.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire