UNIVERSITIES LEAD WAY FOR COMPUTER DATA GRID

September 15, 2000

SCIENCE & ENGINEERING NEWS

Gainesville, FLA. — The Universities of Florida and Chicago will lead an $11.9 million initiative that will lay the groundwork for a computer data grid of unprecedented speed and power, the National Science Foundation announced.

The initiative, called the Grid Physics Network, or GriPhyN, is funded by the largest grant in the National Science Foundation’s new Information Technology Research program, which supports long-term basic research on networking and information technology.

GriPhyN initially aims to give scientists a tool to interpret the vast amounts of data expected to flow from the world’s most ambitious physics and astronomy experiments, but it also could have applications in the business world and elsewhere, said Paul Avery, lead scientist and UF professor of physics.

“We need to plan for these experiments now, because we can’t wait till they start,” Avery said. “A personal computer today can do about a billion operations per second. The overall computing power we need is about 1 million times more than that.”

GriPhyN involves more than a dozen institutions nationally and will pioneer a new concept called virtual data, in which the entire resources of a scientific collaboration become a single vast computing and storage system. GriPhyN could be thought of as a Napster for scientists, where the tunes being downloaded are not purloined hits but crucial insights into the nature of the universe, said project co-leader Ian Foster, professor in computer science at the University of Chicago and associate director of the Mathematics and Computer Science Division of Argonne National Laboratory.

“Results will be computed only if and when needed,” Foster said. “Much of the time, the result you need will already have been computed by one of your colleagues, and the system will know where to find it.”

The initiative initially will benefit four physics experiments that will explore the fundamental forces of nature and the structure of the universe.

Two experiments at the European Laboratory for Particle Physics near Geneva will search for the origins of mass using the Large Hadron Collider, which will become the world’s highest-energy particle collider when it begins operation in 2005. The Laser Interferometer Gravitational-wave Observatory, based in Louisiana and Washington, will probe the gravitational waves of pulsars, supernovae and other phenomena. The Sloan Digital Sky Survey, conducted from Apache Point Observatory in New Mexico, is carrying out a massive automated survey of the stars.

Each of these experiments will produce huge amounts of data that scientists at different institutions around the world will want to search and manipulate. Genomics is another major area of science where data volumes are increasing much faster than analysis capabilities, Foster said. So large are the data collections that scientists anticipate they will be measured in petabytes, where one petabyte is roughly the amount of data that can be contained on 1 million personal computer hard drives. A personal computer hard drive contains approximately 1 gigabyte, which equals 1 billion bytes.

The world’s most powerful supercomputers today can store and process data measured in terabytes, each of which equals 1,000 gigabytes. By tapping into the computer power of multiple institutions around the world, a computational data grid could significantly boost both storage and calculating capacity. The result will not reside at one location or one supercomputer but rather will be spread throughout the institutions, much like power plants connected to an electrical grid.

“The electrical grid is a useful analogy, because users ranging from individuals to large organizations will consume computing and data resources in greatly differing amounts, and they will not care where those resources are located,” Avery said.

Scientists will need to have access to the data, but also the ability to carve out chunks of it and manipulate the chunks to produce results. Because of their size or the available computing power, the movement of these data chunks around the network will have to be scheduled at different times, a task that will require a kind of “intelligent” network.

“A worldwide community of perhaps thousands of physicists want to be able to have their combined computer, storage and network resources used as a single computing engine to solve their problems,” Foster said. “This requires new technology that can coordinate potentially thousands of processors, petabytes of storage and a variety of high-speed and low-speed networks and cause them to operate in some sense as a single analysis engine.”

GriPhyN will build on a base of proven grid technologies, in particular the Globus toolkit, to provide the basic services and capabilities of a computational grid.

Although intended initially for science, GriPhyN could also prove useful for large business applications, Avery said. For example, companies with multiple sales outlets don’t always store sales data in one central location. But marketers hoping to identify consumer buying habits may wish to comb through all the company’s sales data to ferret out buying habits.

“There’s a huge amount of interest in the technology that would allow companies to actually study these large archives of commerce data,” Avery said.

The $11.9 million NSF grant is for research and development only, with no money for hardware, Avery said. Researchers seek a total of $70 million in NSF grants for further research and equipment to build the system. Research and construction should take place simultaneously, with a target completion data of 2005, he said.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire