WILL NET USERS WORK ON PROTEIN PUZZLES?

September 15, 2000

SCIENCE & ENGINEERING NEWS

San Diego, CALIF. — Alan Boyle reports for MSNBC that for decades, researchers have been puzzling over the mysteries of protein folding – the “machinery of life” that translates DNA’s instructions into action. Solving the mysteries could lead to new treatments for Alzheimer’s disease and cancer, but progress has come slowly. Now, programmers are planning to put thousands of Internet users on the case, using distributed computing and open-source concepts.

Experts agree that solving the protein-folding puzzle would represent a milestone in biotechnology. “It’s of fundamental importance for genomics,” said Sorin Istrail, senior director of informatics research at Celera Genomics, which was involved in decoding the human genome. “It’s the central understanding of the machinery of life.”

Living cells assemble amino acids into thousands of types of protein, to carry out tasks such as carrying oxygen through the bloodstream, flexing muscles and fighting infection. The molecules of each protein twist and fold automatically into just the right shape to do its work, based on complex chemical interactions. But sometimes those interactions can go haywire, resulting in conditions associated with a long list of diseases, including Alzheimer’s, mad-cow disease, cystic fibrosis and some forms of cancer. Thus, understanding the protein-folding process and how to keep it from going astray could save lives as well as unlock genetic secrets.

Scott Le Grand, a molecular biologist turned computer programmer, believes his team can succeed where others have gotten bogged down, by turning loose a screensaver program whimsically called “Folderol.”

“It’s a big problem,” he said. “It’s not solved yet. It hasn’t been solved in the 40 years since it was first discovered, and it looks like the computers are ready to solve this for us. We just have to come up with the right algorithm.”

Le Grand believes he has the right algorithm. Like other distributed computing projects, such as SETI@Home and Distributed.Net, the Folderol software would let Internet users download scientific data, run it on their own computers using spare processing cycles, then send the results back to a central database. Folderol was released for public downloading early Friday, September 8.

Meanwhile, Entropia, a distributed-computing firm based in San Diego, is talking with researchers about putting its own Internet grid to work on the protein puzzle. “Imagine that, even while you were using your computer, 98 percent of those cycles while you were typing fell on the floor,” Jim Madsen, Entropia’s president and chief executive officer, told MSNBC.com. “Your PC could have been working on protein folding while you were writing this story.”

Could thousands of desktop computers succeed where supercomputers have failed? Istrail, who led a protein-folding simulation project at Sandia National Laboratories before moving over to Celera, said he’s “extremely skeptical.”

“When it comes to factoring numbers, everybody understands the problem,” he told MSNBC.com. “(But) protein folding is so complex. The best minds in this world have been working on this problem for 40 years, and we’re still somehow in mysterious territory.”

The problem is that the protein-folding process is so complex some scientists believe cracking the code just might be impossible. Figuring out all the possible permutations for a single protein would take billions of billions of years’ worth of brute-force calculations, by some estimates.

Folderol would take a different approach, said Le Grand, who wrote several papers on protein folding and edited a textbook on the subject during nine years of research. The program doesn’t check every possible permutation by brute force. Instead, it farms out data on a particular protein to run on multiple computers, and eventually compares the results from millions of parallel simulations. It would take roughly two to six hours for each user to complete work on a protein with 100 amino acids, Le Grand said. “If a million runs (of the simulation) run independently, and a thousand runs converge on what’s roughly the same thing, then that is the most likely confirmation,” he said.

Concentric circles dance across the screen while Folderol is running, as illustrated in this screenshot. The numbers on the left side of the screen show statistics about the target protein being analyzed. Folderol’s developers say the graphic look of the program will evolve as updated versions are released.

Le Grand and his colleagues say they’d like to let other computer users modify Folderol’s source code, as long as the code relating to data distribution can be protected.

“I would really like to see homebrew hackers get into this the same way they’ve gotten into prime factorization and encryption,” Le Grand said. “If I can provide them a code base that they can work with as building blocks, then I think I can get them involved.”

The Folderol team – which also includes mathematician-musician Stephanie Wukovitz and artist-engineer Doug Engel – already has some Internet cachet: The trio was involved in the creation of BattleSphere, a video game for the Atari Jaguar that has attracted a cult following. “A lot of the algorithms for a 3-D video game are the same algorithms that one would use to simulate the folding of proteins, so there was a natural overlap,” Le Grand said. The Folderol team plans to analyze the same protein data that’s used for the Critical Assessment of Techniques for Protein Structure Prediction, a biennial gathering where researchers gauge how much progress they’ve made on the protein puzzle. That should provide a good opportunity for judging Folderol’s success.

Several companies already have been built around the application of distributed computing to medicine and biotechnology. Entropia offers a range of team projects that participants in 83 countries can sign up for. “If someone who was dear to you had Alzheimer’s disease, and we were working on some research on ways to stall the progress of that disease, that’s a valuable thing to offer,” explained Tim Cusac, the company’s senior marketing analyst. Scott Kurowski, vice president for business development, indicated that Entropia’s smorgasbord could include protein analysis.

“It’s conceivable the genetic algorithm approach could be applied to this,” he said. “We’ve implemented similar kinds of technologies in biotechnology solutions.” Such a project could offer a way to compare different strategies for simulating protein processes. “Rather than hoping to identify the ultimate algorithm, you can run several of them and determine, based on the result, which is the most appropriate to use,” Cusac said. Entropia’s executives said comparing families of proteins may be a better approach to the problem than trying to analyze each and every protein. Researchers estimate that millions of proteins can be found in nature, grouped into just 5,000 families that share similar structures.

Istrail, meanwhile, said more attention should be devoted to identifying and classifying proteins. “Computing will get you only so far,” he said. “What we need is to understand the principles.” He said much more data would be needed to start figuring out the principles of protein folding. “What will be a tremendous help is an industrial as opposed to a piecemeal approach to the problem. There are 6,000 or 7,000 structures in the database … that’s not enough,” he said. Istrail would like to see 50,000 structures entered into the Protein Data Bank. “But how do you get to them?” he asked. “I think the area is in a big deadlock. We need a phase transition to a new environment for research.” For more information visit http://www.folderol.org/ .

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire