COMPUTER PROGRAMS THAT ADAPT AND EVOLVE

September 22, 2000

SCIENCE & ENGINEERING NEWS

Ithaca, N.Y. — Computer programs that can adapt to changing conditions – both in the virtual worlds they are creating and the hardware on which they are running – will be developed under a $5 million project funded as part of the $90 million Information Technology Research initiative of the National Science Foundation (NSF), announced by the White House Wednesday (September 13).

The program, called the Adaptive Software Project, will be conducted by researchers at Cornell University, the Mississippi State University, the College of William and Mary, Ohio State University and Clark-Atlanta University.

Cornell will be the lead institution for the project and Keshav Pingali, Cornell professor of computer science, will be principal investigator, leading an interdisciplinary team of computer scientists, engineers and physicists.

“In building a computer simulation you need to make decisions as you detect new conditions,” Pingali says. “We are going to study the mechanisms of evolution and steal ideas from nature. The biological model is a useful one: When conditions change it acts as a stimulus, and the response is to evolve.”

Adaptive programs, he says, will be able to adjust to changing conditions in the simulation, and also to changes in the hardware on which they are running, accessing more or fewer processors as they are needed and available, and correcting for problems such as the failure of one or more processors in a parallel processing computer. In other words, Pingali says, the software will behave like a living organism, adapting “either to improve results or to improve its own survival.”

The project will develop two simulations as test beds:

Cornell Theory Center’s Computational Materials Institute (CMI) will develop a simulation of the propagation of cracks in structures, such as those that form in aging aircraft, under the leadership of Tony Ingraffea, the Dwight C. Baum Professor of Engineering at Cornell. The CMI has a world reputation for its work on fracture simulation, and in the past three years alone, has won a Grand Challenge award ($1.8 million), a Research Infrastructure award ($1.5 million), and a Knowledge and Distributed Intelligence award ($1.8 million) from the NSF.

The Engineering Research Center at Mississippi State will simulate the behavior of “multi-phase” fluids in which a chemical reaction is taking place, such as the mixtures of liquids and gases that are found in combustion chambers, under the leadership of Professor Bharat Soni.

William and Mary scientists will contribute software for “mesh generation,” a step in the solution of complex equations of motion. Ohio State will develop software to create graphic displays as the output of simulations.

These simulations will run on The Cornell Theory Center’s (CTC) Velocity and Velocity + clusters, supercomputers made up of large numbers of Intel Pentium III processors running in parallel.

Traditionally in such simulations, programmers must set up the conditions of the simulated world and the methods the computer will use in advance. They must also specify the hardware on which the programs will run, setting aside, for example, a certain number of parallel processors and a certain amount of memory.

Adaptive software will be able to choose different mathematical models depending on how the simulation develops, based both on the conditions of the simulation and the availability of processors and memory.

In crack propagation, for example, the Cornell researchers are able to do very sophisticated simulations only at the scale of the object itself, “but all the physics is occurring in a very small volume around the crack tip,” Ingraffea explains. The new software will be able to shift down through intermediate scales to the atomic scale, choosing the best method to use at each scale, based on the conditions it senses at the surrounding levels. “This ITR award demonstrates once again the innovative research being done in CTC’s Computational Materials Institute,” says CTC director Thomas F. Coleman.

Cornell team members, in addtion to Pingali and Ingraffea include Paul Chew and Paul Stodghill, research associates in the Department of Computer Science; Steve Vavasis, associate professor of computer science; physicists Thomas Arias, associate professor, and James Sethna, professor, and Gerd Heber and Chris Myers, CTC research associates.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire