PUTTING A DARWINIAN SPIN ON THE DIESEL ENGINE

September 22, 2000

SCIENCE & ENGINEERING NEWS

New York, N.Y. — Bruce Schechter reports for the New York Times that to engineers, the silent machinery of a living cell is a humbling reminder of the crudeness of their own designs. Every cell is a tiny, elegant engine that converts chemical fuel to energy while emitting innocuous byproducts. By contrast, a diesel engine, the most efficient type of internal combustion engine, is a monument to waste.

So engineers have begun to imitate nature by letting a computerized version of Darwinian natural selection guide their design processes. In this approach, known as genetic algorithms, a computer simulates the performance of a group of machines, each with a slightly different design. These machines compete against one another and, just as in evolution, the best performing, or fittest, survives, to serve as the basis for another generation of designs. This process is repeated until an evolutionary winner, whose performance is maximized, emerges.

Scientists at the University of Wisconsin have recently applied this approach to the design of a diesel engine that, while far from the biological ideal, is more efficient and produces less waste than others in its class.

Recently genetic algorithms have been used in a wide variety of fields as diverse as creating artistic masterpieces, playing expert checkers and designing robots. But, Dr. Peter Senecal, a postdoctoral student at the university, said, “This is the first application of genetic algorithms to engine design.”

Despite numerous refinements, the modern diesel engine is remarkably similar to the 1893 prototype by Rudolf Diesel. A French-born engineer, Diesel made his engine, using the newly discovered principles of thermodynamics, as a replacement of the gasoline engine, then in its infancy and extremely inefficient.

In a gasoline engine, a mixture of air and gas is injected into the engine’s cylinder and then compressed by the piston. The mixture, ignited by a spark from the spark plug, explodes, and this explosive energy drives the piston and eventually makes the wheels turn round.

The efficiency of a gas engine is limited by (among other things) the compression ratio, the amount that the fuel-air mixture is compressed by the cylinder: the more compression the more efficient the engine. But when a gas is compressed it grows hotter and this heating can prematurely ignite the fuel-air mixture, causing a phenomenon known as knocking.

But in a diesel engine, this heating is put to good use. The cylinder of a diesel engine is filled with only air, which is compressed to as much as 500 pounds a square inch, causing its temperature to rise to 1,000 degrees. Then, a tiny bit of fuel is injected into the combustion chamber, where the compressed, heated air causes it to explode without a spark plug. The result is an engine more efficient than one that runs on gasoline, but also one more complex because it requires machinery for compressing and injecting the fuel.

Refining the diesel engine has been a major project of engineers, arousing the interest of vast research laboratories and garage tinkerers alike. Their efforts have allowed diesel engines to evolve from hulking behemoths appropriate only in mines, factories and power plants to engines suitable for automobiles. Still, said Dr. Rolf D. Reiz, a professor of mechanical engineering at the University of Wisconsin, “For the first 80 years of diesel history, design has all been done by trial and error.”

Over the past two decades, with the advent of high-speed computing, this has begun to change, but slowly, because the problem is so difficult. To understand how a diesel engine works in detail requires more than a knowledge of piston and valve; the physics of fuel injection, exactly how fuel breaks into a mist and swirls around a cylinder, must be considered; every detail of physics and chemistry of the exploding, turbulent fireball of fuel must be tracked.

It’s the kind of problem that chokes even the most powerful supercomputers. But over the last few years, computers running software developed by Dr. Reiz and his colleagues at government laboratories, universities and in industry have begun to make progress, though the progress is slow.

“A typical simulation will run for several days on a supercomputer,” Dr. Reiz said. That simulation is of one engine cycle, which actually takes place in less than a tenth of a second. “We’re much slower than real-time. It’s kind of like the early days of weather prediction where you’d be predicting the weather that occurred three weeks ago. We’re in that realm, but nevertheless we can use the tools to do things that cannot be done in the laboratory.”

The computer simulation can be used to show the effects of varying any of the parameters of the engine’s design: the timing of the fuel injection, how much fuel is injected, at what pressure and so on. There can be dozens of parameters to adjust, each of which affects the others. Finding an optimal combination by trial and error on a real-world engine could take practically forever. But, with simulations taking two days apiece, trying all the combinations of variables with a computer does not seem to work much faster.

After searching the mathematical literature, Dr. Senecal, a student of Dr. Reiz, found a better way to speed up the evolution of designs by borrowing genetic principles.

The problem of how to optimize a process based on many parameters can be likened to locating the peak of a mountain range. One approach is to start somewhere and keep walking up. Eventually the walker will reach a point where he can walk up no further, and this is a peak. But is this the highest peak?

Evolution confronts this problem in its search for an optimal combination of genes for survival. Mutating genes can be thought of as tweaking parameters. Somehow evolution manages to find a way of conquering mountains while not planting its flag on insignificant peaks. It does so by sending out not just one explorer but a veritable army.

By randomly mutating genes, evolution scatters a group of explorers across the so-called fitness landscape. The ones that find the highest ground, and are thus the fittest, survive and share their genes. Their offspring will then explore an area of the mountain closer to the place their parents landed, and perhaps discover even higher ground corresponding to even greater fitness.

The basic idea of genetic algorithms is that entire classes of designs, strategies or artworks can be written down as depending upon a set of parameters. In the case of engine design, Dr. Senecal chose to make these parameters correspond to elements like injection timing, pressure and other operating variables. These parameters are, in effect, the genes of the engine and the computer starts by generating a random set of these genes.

The engines bearing these “genes” are simulated and the results are compared. Dr. Senecal rated the fitness of his engines on their fuel efficiency and the amount of soot and nitrate wastes they generated. The best of these designs are mated together by swapping genes in a way inspired by nature, and the process is repeated.

Ordinarily, genetic algorithms require hundreds of “organisms” to be evaluated each generation, but given how time-consuming it is to simulate a diesel engine cycle, Dr. Senecal needed a better technique. He discovered in the literature an approach called microgenetic algorithms, a refinement that allowed him to consider generations of just five organisms. Still, using a Silicon Graphics Origin 2000 supercomputer with 32 processors it took more than two weeks of continuous operation to find an optimal set of parameters.

The effort was worthwhile; Dr. Senecal’s test engine consumed 15 percent less fuel than a standard engine while producing one-third as much nitric oxide and half the soot.

These results go beyond theoretical. To make sure their simulation corresponds to reality, the Wisconsin scientists have simulated a Caterpillar truck engine used to power real- world machinery. By tweaking the parameters of this real-world engine they confirmed their computer prediction, and that confirmation is of great interest to engine designers.

“What we can now do,” Dr. Reiz said, “is indicate to engine designers those variables that are most important or ones that might have been overlooked had it not been for the computer identifying it.” In particular, these studies have highlighted the importance of injecting the fuel into the cylinder in tiny bursts instead of in a single pulse. Doing so increases the surface area of the fuel, which leads to cleaner and more efficient burning.

So far the Wisconsin engineers have focused only on tweaking parameters while keeping the overall engine design constant. The next stage will involve having the computer vary the engine shape, particularly in the curve of the cylinder head.

“If you look at the shape of the piston in the truck engines you see it really hasn’t changed much in the last 40 years,” Dr. Reiz said. Meanwhile, the fuel injection system has changed radically.

“In the old days injectors used to operate at 2,000 pounds per square inch,” he added. “Now we’re talking about 20,000 pounds per square inch. So it stands to reason that an engine design that might have been useful for 2,000 pounds per square inch may not be useful for 20,000 pounds per square inch.”

Nobody has tinkered with the design because tinkering would involve creating a design, having a new piston made, and running it in the laboratory without much guidance from theory, and doing it over and over again. Rather than confront this expensive and frustrating process, designers have left the piston alone.

Now, Dr. Reiz said, “We can do all this on the computer without even having to cut metal.” The result of this application of genetic algorithms could mean, in a few years, a revolution in the diesel engine.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This