SEMICONDUCTOR LASERS WILL FUNCTION AS TRANSMITTERS

September 29, 2000

SCIENCE & ENGINEERING NEWS

Santa Barbara, CALIF. — A University of California at Santa Barbara (UCSB) research group has successfully demonstrated operation of a high performance long-wavelength (1.55 mm) Vertical-Cavity Surface-Emitting Laser (VCSEL) grown as a single semiconductor crystal. Such a demonstration represents the crucial step towards providing low-cost transmitters for fiber optic communications.

A VCSEL (pronounced “vicsel”) is an extremely small laser, about three-microns long (i.e., approximately 1/10,000 inch), which consists of two mirrors sandwiching an active region. The mirrors reflect back and forth the light generated in the active region. The reflection back and forth results in “stimulated emission” providing emitted light at a single wavelength or color. Such “coherent” emission is the hallmark of lasing.

VCSELs are intended to function as components in systems such as data links, which transmit information in the form of light within optical fibers. For a system such as a data link to be cost-effective, its price cannot exceed, say, $100. So a single, if indispensable component – the VCSEL – can cost no more than about $10. The way to achieve that comparatively low cost is through mass production. So VCSEL research basically asks the question how can tens of thousands of little lasers be made inexpensively and reliably on a semiconductor wafer (with a two-inch diameter).

The UCSB research group headed by Larry Coldren, director of the Optoelectronics Technology Center and the Fred Kavli Professor in Optoelectronics & Sensors, has approached the problem by growing VCSELs on indium phosphide (InP) semiconductor wafers as single crystals via a technique called Molecular Beam Epitaxy (MBE) or just “epitaxy,” for short. Think of this technique in terms of programming a machine to deposit layer by layer first a mirror then an active region then another mirror to form a complete VCSEL structure.

Coldren described the current results – presented to a gathering of more than 100 industry, academic and government leaders at the end of July and scheduled for more general dissemination at the Sept. 25 Laser Conference in Monterey, Calif. – “as the best obtained anywhere in the world by any technique.”

Heretofore, the best results for long wavelength VCSELs had been achieved by another technique, “wafer fusion,” mastered by Coldren’s UCSB colleague John Bowers, professor of electrical and computer engineering. The wafer-fusion technique pieces together the mirrors and active region from layers grown on separate wafers.

What distinguishes Coldren’s approach not only from Bowers’ but all others is the single-step growth process of nearly defect-free, single-crystal material on indium phosphide. The single-step approach promises much greater reliability when the process is scaled up for mass production than do the multi-step competitors. Not only, says Coldren, is his group’s approach to VCSEL-manufacturing intrinsically less expensive than other techniques, it is also inherently more reliable.

After the crystal is grown layer by layer on a two-inch indium phosphide semiconductor substrate, tens of thousands of individual lasers or VCSELs are isolated by etching down to the cavity where the active region exists. The result is a wafer dotted with perhaps 25,000 wells – each of which is a miniscule laser.

The key to the single-step, single-crystal growth technique was the development of a viable process to grow high quality antimony-containing layers on indium phosphide.

In order to grow a perfect crystal by the epitaxy method, the lattice constants (i.e., the spacing between atoms) of the semiconductor substrate and the overlaid layers have to match.

Conventional VCSELs in production today are based on a substrate of gallium arsenide. These VCSELs operate at short wavelengths (around 0.85mm). One key problem that arises from using short wavelength VCSELs for transmitting light through a fiber optic cable is dispersion. In other words the information is blurred if it is transmitted at a high data rate and propagates a long distance.

VCSELs that emit at longer wavelengths reduce the blurring problem. But unless very exotic active regions are used, they require a different substrate wafer, indium phosphide instead of gallium arsenide.

The key research problem then is to find combinations of semiconducting elements (from Periodic Table groups III and V) with a lattice constant match to indium phosphide that also provide for a large range of refractive index values for good mirrors as well as high-quality active regions.

Two papers submitted this summer to professional journals by Coldren’s research group report successful solutions to that problem.

“Selectively-Etched Undercut Apertures in AlAsSb-Based VCSELs” describes a single crystal 1.55mm-VCSEL in which the mirrors are made of a combination of aluminum, arsenic, and antimony and the active region a combination of aluminum, indium, gallium, and arsenic.

The other paper, describing the more recent spectacular results, “1.55mm, Double-Intracavity Contacted, InP-Lattice-Matched VCSELs,” details experiments with the same materials grown in a more optimized structure.

The first author on the first paper is fifth-year graduate student Eric Hall. The first author on the second paper is third-year graduate student Shigeru Nakagawa. In addition to Hall, Nakagawa, and Coldren, authors on both papers include postdoc Guilhem Almuneau and fifth-year graduate student Jin K. Kim. Additional authors of the second paper are second-year graduate student David Buell and Professor Herbert Kroemer. All authors are affiliated with the UCSB departments of Electrical and Computer Engineering and of Materials.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire