“SPOOKY PHOTONS” MAY BREAK MINIATURIZATION BARRIER

September 29, 2000

SCIENCE & ENGINEERING NEWS

Pasadena, CALIF. — Every year, faster and faster computers become available. The upcoming holiday season will be no exception, with some chip speeds already being advertised in terms of gigahertz, a thousand times faster than the more familiar yardstick of megahertz. We take for granted Moore’s law, the idea that computers double their speed every 18 months or so. Will this ever end?

Many experts believe the end is in sight. At some point, traditional manufacturing procedures will hit a wall on the road to faster chips. But now, physicists may have found a way to help researchers go past this dead end. In a paper published in the September 25 issue of the journal Physical Review Letters, researchers show that a special kind of light may eventually enable manufacturers to continue miniaturizing – and thereby speeding up – computer chips and other electronic devices well beyond what traditional techniques allow. Yet, their technique would still retain the same basic manufacturing approach, known as lithography, which uses light to sculpt the components of computer chips.

A computer chip is basically a grid of on-off switches connected to each other. A state-of-the-art chip contains millions of these switches, known as transistors. Electrical current flows through these switches in order to perform the calculations needed to crunch numbers in spreadsheets, write letters on wordprocessors, and zap aliens in computer games. How do manufacturers design faster chips? Generally, they keep shrinking the transistors to smaller and smaller sizes – allowing chipmakers to crowd together more transistors in a tinier area. This in turn means that electric current travels smaller distances through the transistors – resulting in faster processing speeds.

Currently, state-of-the-art computer chips have transistors with dimensions between roughly 180 and 220 nanometers (nm) – only about 2000 atoms wide, or about 400 times narrower than the width of a human hair. Traditional computers as we know them can function with chips having dimensions as small as 25 nm – about 250 atoms wide, or about 3000 times narrower than a human hair width. At that point, bizarre effects of the subatomic world come in, messing up the calculations of traditional computers.

But researchers have become worried that we won’t even be able to reach this 25 nm limit. What is the problem?

The roadblock comes at one of the earliest steps of chip manufacture. In lithography, one first shines light on a photosensitive material to create a stencil-like “mask.” Placing this mask over a block of material such as silicon, manufacturers can carve or “etch” the components that make up transistors and other electronic devices. However, chipmakers can only endow transistors and devices with dimensions as small as those on the mask. The roughly 180-220 nm features on state-of-the-art chips originate from similar dimensions on the mask.

What determines the dimensions on lithographic masks is the behavior of light. A light beam can be visualized as a rippling wave with crests and valleys. The distance between successive crests is called the wavelength. Like a water wave passing between two rocks, a light wave can split up. Just as it happens for water continuing beyond the rocks, the waves can later recombine. In the process of recombining, it can create wave patterns smaller than its very own wavelength.

But a central principle of optics–known as the “Rayleigh criterion” – says that a light wave can’t make patterns with features smaller than half its wavelength. In fact, the Rayleigh criterion says that 248-nm-wavelength “deep ultraviolet” light – currently used to make the chips with the approximately 180-220 nm dimensions – can’t create chips with features smaller than 124 nm. Smaller features are possible by using shorter-wavelength light, but such light gets more and more difficult to produce as you go to shorter wavelengths.

In new research by Jonathan Dowling of JPL/Caltech and his colleagues, physicists illustrate that the Rayleigh criterion is mainly a limit of classical, pre-20th century physics–and not of the “quantum” physics discovered and explored since the 20th century. This research – still a theoretical proposal at this stage – is made by a team of physicists at the Jet Propulsion Laboratory, the California Institute of Technology, and the University of Wales, Bangor. Their proposal is based on earlier insights and results by physicists at many other institutions, including UCLA, the University of Rochester, Boston University, and the University of Maryland, and the Federal University of Minas Gerais in Brazil.

Dowling and his colleagues show that existing sources of light can potentially make chips with dimensions that are much smaller fractions of the wavelength than classical physics allows. In their scenario, 248-nm light could make features as tiny as 62 nm – a fourth of the wavelength – or potentially much smaller–through a quantum physics process known as “entanglement.”

To understand entanglement, it’s useful to temporarily visualize a light beam not as a wave, but as a stream of particles called photons. In this “particle” picture of light, photons are usually unaffected by one another – each photon normally behaves independently of its neighbors. But sometimes two or more photons can become interlinked or “entangled” – whereby the properties of one photon are dependent upon the properties of its partners. As physicists like to say, entangled photons are “correlated” with each other. Albert Einstein called this process “spooky action at a distance” because the particles can seem to influence each other instantly, even if they become separated by the distance of a galaxy or more! In the laboratory, entangled photons can be produced by passing a light beam through a special crystal.

The entangled photons come into play in the researchers’ proposal for “quantum interferometric optical lithography,” an exotic version of lithography that takes advantage of the unique properties of the quantum world. In their proposal, two entangled photons enter a setup with a pair of paths. The photons travel as a single unit. However, the setup is designed so that it is impossible to determine if the two-photon unit takes the first path or the second path. This very property makes the photon pair behave once again as a single rippling wave. This wave splits up to travel both paths. Eventually, the two parts of the wave are made to recombine on a surface. Because the two photons constituting the light wave are entangled with each other, and therefore are correlated in a special way, they create patterns equivalent to those made by a single photon with half the wavelength.

Therefore, an entangled pair of photons each with 500 nm wavelength would act as a single photon with 250 nm – allowing researchers to write 125 nm patterns on a side, two times smaller than the Rayleigh criterion allows for a single “classical” photon with a 500-nm wavelength. Such an entangled pair could write circuit patterns with four times smaller area, since the surface of a mask has two dimensions, length and width, and there is a twofold improvement on each side. Preparing a trio of entangled photons – a difficult task – and sending them through the device would create even better results: they would act as a single photon with a third of the wavelength, enabling patterns with nine-fold smaller area on a chip. Entangling four entangled photons – more difficult yet – could produce patterns with a 16-fold smaller area, and so on.

To realize this proposal, researchers need to surmount numerous technical challenges. Towards these ends, scientists are developing “two-photon resists,” materials designed to absorb photon pairs arriving simultaneously. But, for example, they have yet to develop the special materials required to generate entangled photons at short wavelengths. Still, physicists are already working on demonstrating simple versions of this proposal. One of them is Yanhua Shih, a professor of physics at the University of Maryland in Baltimore County.

“My laboratory is working on this new idea of optical lithography experimentally,” says Shih. “Jon Dowling and his co-workers did not only propose a new way of conducting lithography in this paper,” according to Shih, who has done related experiments on entanglement. “The fundamental idea is far more important, in my opinion. It is a great idea to utilize this very important physics to the application of lithography.”

“I am impressed at the very clever application of some very fundamental features of the quantum mechanics of the electromagnetic field,” comments Carlos Stroud, a professor of optics and physics at the University of Rochester. “That said, there would appear to be rather substantial engineering problems before we get super-dense computer chips. These engineering problems may be a lot tougher than the quantum problem. Still, it clearly demonstrates the advances that are available when technology really is able to take advantage of quantum coherence. It is a nice step in that direction.”

The new proposal opens the possibility of using light at existing wavelengths to manufacture computer chips smaller than 25 nm, the size limit below which classical computer designs begin to fail. “In classical computing, these quantum effects are viewed as bad,” says Dowling of JPL/Caltech. “However, we embrace these quantum effects and exploit them,” he says. Such effects can lead to interesting new electronic devices taking advantage of processes in the quantum realm.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This