UNRAVELING THE MYSTERIES OF CLUSTERING

September 29, 2000

SCIENCE & ENGINEERING NEWS

San Diego, CALIF. — Ron Anderson, Mike Lee and Steve J. Chapin report that scientific clusters are used for a broad range of disciplines, including biology (genome mapping, protein folding), engineering (turbo-fan design, automobile design), high-energy physics (nuclear-weapons simulation), astrophysics (galaxy simulation) and meteorology (climate simulation, earth/ocean modeling). For example, computer scientists at Syracuse University’s High Performance Distributed Computing Lab in Syracuse, N.Y., are working with biochemists at the University of Washington on ab initio protein folding, which is a critical step in helping us interpret the results of Celera Genomics’ recent sequencing of the human genome. To solve this problem, Syracuse’s Orange Grove Cluster uses Condor from the University of Wisconsin to run thousands of independent jobs covering portions of a search space, using a process known as simulated annealing, which starts with a guess at a solution and iteratively improves that solution until it reaches convergence.

One of the first “modern” clusters was the Beowulf project at NASA’s CESDIS, led by Thomas Sterling and Donald Becker ( http://www.beowulf.org ). Beowulf was inspired by physicists’ need to analyze large data sets and the scarcity of computer time on their local supercomputers. The Beowulf team bought 16 off-the-shelf PCs and connected them with two Fast Ethernet networks. The emphasis of the Beowulf project was on using the cheapest available commodity components, so the team selected commodity Ethernet and Intel-compatible processors.

At the other end of the spectrum, the Computational Plant (C-Plant) project at Sandia National Labs in Albuquerque, N.M., is an attempt to build a true supercomputer from COTS (commercial, off-the-shelf) components. The Sandia scientists focused on distributed computing using message passing (that is, no shared memory between processors). They focused on performance and built their machine using Digital (now Compaq) Alpha processors with a gigabit-speed system-area network based on Myrinet. The scientists have developed low-latency message-passing software, called Portals, which lets them extract the maximum performance from the underlying network. The newest C-Plant cluster, Antarctica, is scheduled to be in place in mid-October and will have more than 1,800 Alpha computers connected by Myrinet.

The choice of hardware for scientific computing depends on the applications you need to run. For high-performance applications, the critical factor is usually the granularity, or ratio of computation to communication. Coarse-grained applications tend to send larger messages with low frequency, while fine-grained computations more often send smaller messages. Beowulf-class clusters, because of their slower networks, are best for coarse-grained applications. C-Plant-class clusters preserve the computation-to-communication ratio seen on past supercomputers, such as the Intel Paragon, and can handle more communication-intensive applications than the Beowulf clusters can. Commercial clusters offer better support for coarse-grained applications, typically using Fast Ethernet as the interconnection network.

The Orange Grove cluster at Syracuse University represents a midpoint on the spectrum of hardware choices. The Orange Grove has 48 dual-processor Intel machines and 16 Alphas, all connected by 100-Mbps switched Fast Ethernet. In addition, the cluster has 16 nodes connected via Giganet’s cLAN, a native hardware implementation of the VIA.

Most scientific clusters use some form of batch-processing or work-sharing software, such as the PBS (Portable Batch System) from MRJ Technology Solutions (now part of Veridian Information Solutions), LSF (Load Sharing Facility) from Platform Computing Corp. or Condor. These software packages control the placement and execution of programs on the cluster automatically, freeing the end user from worrying about administrative details.

Commercial vendors are offering complete scientific cluster packages. Linux NetworX’s solutions contain both the hardware and the management software in the box. Sun Microsystems sells the hardware solution as a package called Sun Technical Compute Farm, and its recent acquisition of Gridware, a batch-processing software provider, implies a turnkey solution is on the way.

Research clusters are almost exclusively Unix-based, with Linux being the dominant operating system. This dates back to Don Becker’s choice of Linux for the original Beowulf cluster; the rapid propagation of Beowulf established Linux as the default cluster OS. The cluster realm is one in which Unix and its variants have a substantial lead on Windows NT. Clearly, Microsoft has taken steps to address this, but for the near term, Unix remains the operating system of choice for cluster applications. There have been research clusters built based on Windows, including Andrew Chien’s work at the University of Illinois and the University of California at San Diego, and the AC3 cluster at Cornell University. And many of the management packages for batch processing software have also been ported to Windows. Even though these researchers have established that it is possible, if not easy, to build Windows clusters for scientific research, there is a widely held bias in the research community toward Unix.

Two trends first used in research computing are now emerging and should soon find application at more businesses. First is the construction of clusters of multiprocessors, or clumps. These clusters use the same networking technology as plain clusters, but each node in the cluster is a parallel, shared-memory machine. While traditional clusters use message passing almost exclusively, clumps encourage a combination of shared-memory and message-passing programming known as mixed-mode programming. In the commercial world, this will allow the easy replication of multithreaded servers and speed up each individual server.

At the same time, we are moving toward a convergence of the system-area network (used to pass messages between processes) and the storage-area network (used to access devices). VIA (Virtual Interface Architecture) is an emerging standard in message passing. Another new standard for storage networks, called Infiniband, is also beginning to take hold. While Infiniband is the anointed standard, whether customers will adopt it in lieu of Fibre Channel remains to be seen (the contest will be akin to that between OSI networking standards and TCP/IP). If Infiniband pans out, the next logical step is to produce a “VIA++”, which merges system-area and storage-area networks. This convergence will help applications fronting large databases, and will make access to remote servers and remote devices seamless, enabling a new wave of applications.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire