CLEARING THE AIR: STUDYING GREENHOUSE GASES

October 6, 2000

by J. William Bell, NCSA Senior Science Writer

Champaign, IL — For all the transparency that its name implies, the greenhouse effect and its impact on global warming is a muddied topic. Many scientists believe that greenhouse gas emissions will cause average global temperatures to rise by almost 6 F degrees over the next 100 years. Other best guesses put the number at something closer to 3.5 F degrees. And contrarians maintain that there is no compelling reason to think that a rise in global temperature is caused by increases in greenhouse gas emissions in the first place.

Few, however, dispute that the levels of heat-trapping greenhouse gases such as carbon dioxide, methane, and chlorofluorocarbons have risen tremendously in the last 100 years. The atmospheric carbon dioxide level, for example, is up about 25 percent since the late 1800s, with most of this rise coming in the last 50 years alone. That level is higher than it has been in the last 160,000 years, and the burning of fossil fuels is the largest contributing factor.

“There’s no doubt that carbon dioxide levels have increased since the industrial revolution,” says James Kirkpatrick, a geology professor at the University of Illinois at Urbana-Champaign. “But is the carbon dioxide increase causing global warming through the greenhouse effect? And if it is, what can be done about it?”

Kirkpatrick and his colleague Andrey Kalinichev are currently working on the chemistry behind that second question. They create molecular dynamics models of carbon dioxide and other chemical species as they dissolve in water, as well as models of that water-carbon dioxide solution as it interacts with mineral surfaces. These simulations, which are being run on NCSA’s SGI Origin2000 supercomputer, will help researchers develop methods of “sequestering” carbon dioxide – injecting it deep into the ocean or a deep groundwater aquifers where it won’t interact with the atmosphere and won’t have the same negative environmental impact.

“We’re focused on the fundamentals here, but there’s a broad societal connection to the science,” says Kirkpatrick.

Carbon dioxide injection has been used for years in the oil and natural gas industry to enhance the amount of fuel extracted from underground deposits. Field testing of deep injection as a means of sequestering excess carbon dioxide created when burning fossil fuels, however, is a more recent undertaking, with many projects cropping up only in the last 10 years or so. Regardless of the intended goal, the process is easily understood. The gas is captured, highly pressurized, piped to a site, and then injected deep into the ground or ocean.

If injected into porous, isolated rock, the carbon dioxide interacts with whatever minerals are present and may not have a negative environmental impact. If that porous rock happens to be an oil reservoir, the carbon dioxide helps move the oil out the well. When injected into the water of an aquifer or the ocean, the carbon dioxide may simply dissolve into a solution with the water. If the pressure is high enough, the carbon dioxide will take on a “supercritical” liquidlike state, remain separate from the water, and not interact much at all.

“One of carbon dioxide’s main sinks is the ocean, anyway – most of it ends up dissolved there as a part of the natural carbon cycle. In a way, sequestration just speeds up that process,” says Kirkpatrick. And, according to a 1997 study by the Center for Energy and Environmental Studies at Princeton University, thousands of years of excess carbon dioxide produced by the burning of fossil fuels at the current rate could be managed using aquifer and ocean sequestration.

The overall impact is still uncertain, though. “Nobody knows these [products of sequestration] and their environments well enough to know which of these approaches might be best,” says Kalinichev, a visiting researcher at the U of I and head of the Physical Research Laboratory at the Institute of Experimental Mineralogy in Chernogolovka, Russia.

Kalinichev and Kirkpatrick’s research is the horse that has to go in front of the cart. Before undertakings like sequestration can be fully understood, the physical and chemical properties of water and carbon dioxide solutions and how they interact with their surroundings have to be brought into relief.

To do that, the team focuses closely on the hydrogen bonding between the molecules in their simulated solutions. When a hydrogen atom bonds to another atom that strongly attracts electrons, the resulting molecule is very polar, with one end strongly positive and one strongly negative. Hydrogen bonds form between the opposing ends of these polar molecules.

In the sorts of environments where carbon dioxide sequestration would be most common – under thousands of feet of earth or ocean – temperature and pressure vary widely, from near freezing to 400 F and with pressures of up to 1,000 times the atmospheric pressure at sea level. Accordingly, the team uses these two factors as their two most common thermodynamic variables.

“The dissolved species are dynamic objects. Hydrogen bonding is constantly changing. The models allow us to estimate lifetimes of different bonds under different conditions and states,” says Kalinichev.

Already they have discovered that hydrogen bonding is reduced at high temperatures, while pressure has little impact. The reduced bonding makes carbon dioxide – which does not readily bond, and thus dissolve, because it is not very polar – more soluble under what would be common sequestration conditions. And by understanding the hydrogen bonds, the team can also predict properties such as density, viscosity, diffusion rates, and heat capacity under changing conditions.

The models previously included only pure water, but they now consider carbon dioxide, carbonates like limestone that might make up a mineral wall that the water carbon dioxide mixture would interact with, and salts like sodium chloride, as well. Adding these compounds – and basing the models on first principle calculations – brings the simulations much closer to the real world. The amount of time required to complete these models is, however, and there’s still a great deal of work to be done. One picosecond of the molecular dynamics simulation requires about an hour on five Origin2000 processors, and a typical run tracks the behavior of only several thousand atoms over the course of several hundred picoseconds.

“We’re still simulating a relatively small number of molecules, therefore we are applying so called periodic boundary conditions to simulate bulk aqueous solutions and their interactions with mineral surfaces,” says Kalinichev. “But you have to begin with these mechanical descriptions of each molecule to extract the information that you want.”

Kirkpatrick adds, “Today’s science requires – absolutely requires – thinking on the molecular scale to understand what takes place on the macroscopic scale.”

This research is supported by the Center for Advanced Cement Based Materials, the National Science Foundation, and the Department of Energy Basic Energy Sciences Carbon Management Program, Geosciences Division.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This