CLEARING THE AIR: STUDYING GREENHOUSE GASES

October 6, 2000

by J. William Bell, NCSA Senior Science Writer

Champaign, IL — For all the transparency that its name implies, the greenhouse effect and its impact on global warming is a muddied topic. Many scientists believe that greenhouse gas emissions will cause average global temperatures to rise by almost 6 F degrees over the next 100 years. Other best guesses put the number at something closer to 3.5 F degrees. And contrarians maintain that there is no compelling reason to think that a rise in global temperature is caused by increases in greenhouse gas emissions in the first place.

Few, however, dispute that the levels of heat-trapping greenhouse gases such as carbon dioxide, methane, and chlorofluorocarbons have risen tremendously in the last 100 years. The atmospheric carbon dioxide level, for example, is up about 25 percent since the late 1800s, with most of this rise coming in the last 50 years alone. That level is higher than it has been in the last 160,000 years, and the burning of fossil fuels is the largest contributing factor.

“There’s no doubt that carbon dioxide levels have increased since the industrial revolution,” says James Kirkpatrick, a geology professor at the University of Illinois at Urbana-Champaign. “But is the carbon dioxide increase causing global warming through the greenhouse effect? And if it is, what can be done about it?”

Kirkpatrick and his colleague Andrey Kalinichev are currently working on the chemistry behind that second question. They create molecular dynamics models of carbon dioxide and other chemical species as they dissolve in water, as well as models of that water-carbon dioxide solution as it interacts with mineral surfaces. These simulations, which are being run on NCSA’s SGI Origin2000 supercomputer, will help researchers develop methods of “sequestering” carbon dioxide – injecting it deep into the ocean or a deep groundwater aquifers where it won’t interact with the atmosphere and won’t have the same negative environmental impact.

“We’re focused on the fundamentals here, but there’s a broad societal connection to the science,” says Kirkpatrick.

Carbon dioxide injection has been used for years in the oil and natural gas industry to enhance the amount of fuel extracted from underground deposits. Field testing of deep injection as a means of sequestering excess carbon dioxide created when burning fossil fuels, however, is a more recent undertaking, with many projects cropping up only in the last 10 years or so. Regardless of the intended goal, the process is easily understood. The gas is captured, highly pressurized, piped to a site, and then injected deep into the ground or ocean.

If injected into porous, isolated rock, the carbon dioxide interacts with whatever minerals are present and may not have a negative environmental impact. If that porous rock happens to be an oil reservoir, the carbon dioxide helps move the oil out the well. When injected into the water of an aquifer or the ocean, the carbon dioxide may simply dissolve into a solution with the water. If the pressure is high enough, the carbon dioxide will take on a “supercritical” liquidlike state, remain separate from the water, and not interact much at all.

“One of carbon dioxide’s main sinks is the ocean, anyway – most of it ends up dissolved there as a part of the natural carbon cycle. In a way, sequestration just speeds up that process,” says Kirkpatrick. And, according to a 1997 study by the Center for Energy and Environmental Studies at Princeton University, thousands of years of excess carbon dioxide produced by the burning of fossil fuels at the current rate could be managed using aquifer and ocean sequestration.

The overall impact is still uncertain, though. “Nobody knows these [products of sequestration] and their environments well enough to know which of these approaches might be best,” says Kalinichev, a visiting researcher at the U of I and head of the Physical Research Laboratory at the Institute of Experimental Mineralogy in Chernogolovka, Russia.

Kalinichev and Kirkpatrick’s research is the horse that has to go in front of the cart. Before undertakings like sequestration can be fully understood, the physical and chemical properties of water and carbon dioxide solutions and how they interact with their surroundings have to be brought into relief.

To do that, the team focuses closely on the hydrogen bonding between the molecules in their simulated solutions. When a hydrogen atom bonds to another atom that strongly attracts electrons, the resulting molecule is very polar, with one end strongly positive and one strongly negative. Hydrogen bonds form between the opposing ends of these polar molecules.

In the sorts of environments where carbon dioxide sequestration would be most common – under thousands of feet of earth or ocean – temperature and pressure vary widely, from near freezing to 400 F and with pressures of up to 1,000 times the atmospheric pressure at sea level. Accordingly, the team uses these two factors as their two most common thermodynamic variables.

“The dissolved species are dynamic objects. Hydrogen bonding is constantly changing. The models allow us to estimate lifetimes of different bonds under different conditions and states,” says Kalinichev.

Already they have discovered that hydrogen bonding is reduced at high temperatures, while pressure has little impact. The reduced bonding makes carbon dioxide – which does not readily bond, and thus dissolve, because it is not very polar – more soluble under what would be common sequestration conditions. And by understanding the hydrogen bonds, the team can also predict properties such as density, viscosity, diffusion rates, and heat capacity under changing conditions.

The models previously included only pure water, but they now consider carbon dioxide, carbonates like limestone that might make up a mineral wall that the water carbon dioxide mixture would interact with, and salts like sodium chloride, as well. Adding these compounds – and basing the models on first principle calculations – brings the simulations much closer to the real world. The amount of time required to complete these models is, however, and there’s still a great deal of work to be done. One picosecond of the molecular dynamics simulation requires about an hour on five Origin2000 processors, and a typical run tracks the behavior of only several thousand atoms over the course of several hundred picoseconds.

“We’re still simulating a relatively small number of molecules, therefore we are applying so called periodic boundary conditions to simulate bulk aqueous solutions and their interactions with mineral surfaces,” says Kalinichev. “But you have to begin with these mechanical descriptions of each molecule to extract the information that you want.”

Kirkpatrick adds, “Today’s science requires – absolutely requires – thinking on the molecular scale to understand what takes place on the macroscopic scale.”

This research is supported by the Center for Advanced Cement Based Materials, the National Science Foundation, and the Department of Energy Basic Energy Sciences Carbon Management Program, Geosciences Division.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire