HOMEBREW SUPERCOMPUTER COMPUTES AT BARGAIN PRICES

October 6, 2000

FEATURES & COMMENTARY

San Diego, CALIF. — In mid-April a group of 20 Vanderbilt University physicists, biologists and computer technicians held a two-and-a-half day pizza party. At its end they had assembled a powerful supercomputer from off-the-shelf PC parts for a bargain-basement price.

“When they told me what they planned to do, I was skeptical,” admits Chip Cox, Vanderbilt’s Internet 2 director who helped bring together faculty members from the campus and medical center who need supercomputer-level number crunching. “But I was wrong. They did it, and it works!”

They named their new number cruncher VAMPIRE, which stands for Vanderbilt Multiple Processor Integrated Research Engine. It was constructed with a parallel architecture. That is, it uses a large number of processing units, or nodes, that work at the same time and are connected by a high-speed network.

Such a design can achieve tremendous speed and power by processing information simultaneously at many nodes.

Parallel processing requires users to break down their problems into small pieces that can be processed by individual nodes and then reassembled to provide the final result. This is easier to do with some problems than with others. Fortunately, a number of science problems lend themselves to such an approach and the tremendous cost-advantage is motivating many researchers to adapt their methods to take advantage of it.

The Vanderbilt group is not alone in such an effort. Scientists, engineers and computer technicians at a number of universities around the country are building similar homebrew systems. “The average university system currently is about 16 to 32 nodes,” says Alan Tackett, the Information Technology Services (ITS) administrator who manages the new machine. “So VAMPIRE is considerably larger than average.”

Parallel computers built from off-the-shelf hardware have been dubbed Beowulfs, after the name of one of the first computers of this type built in the early 1990s at NASA’s Goddard Space Flight Center in Greenbelt, Md. The University of New Mexico has constructed a 500-node Beowulf and recently the University of Pittsburgh received funding for a 1,000-node machine, Tackett reports.

“Of course, we’d like to grow VAMPIRE to that size,” says Paul Sheldon expansively. Sheldon, an associate professor of physics and astronomy, has spearheaded the project along with Jason Moore, an assistant professor of molecular biology and biophysics, and Will Johns, an assistant professor of physics and astronomy.

The new Vanderbilt supercomputer was declared operational Sept. 11, following a several-month period of installing and debugging the software. The last element added was a “gateway server” that controls access to the processor array and allocates the computer resources to different jobs in an equitable fashion.

For the April party, boxes containing dozens of processors, motherboards, hard drives, network cards, and memory cards were set out in a small conference room in a campus building like techie party favors.

“It was amazing to see thousands of dollars worth of memory chips in a box the size of a toaster,” says Tim Miller, a physics graduate student. “It was like being a kid in a candy shop.”

The party-goers’ task was to assemble more than 50 stripped-down personal computers. The researchers and technicians plugged in two 600 megahertz Pentium III processors and 256 megabytes of Random Access Memory or RAM and connected a 10 gigabyte hard drive and a networking card to each motherboard. Each motherboard was installed in a metal cabinet about the size, quite appropriately, of a pizza box.

The components installed in each cabinet act as a single processing unit, or node, in the finished supercomputer. The nodes are all networked to each other and to the gateway server. The remaining part of the supercomputer is a server that operates a bank of hard drives with a total capacity of 350 gigabytes that serves as a central data storage area.

It took the group a little more than two days to assemble the 54 nodes. Individuals came and went as their schedules dictated. There were about 10 people working in the room at any given time. One of their biggest problems, they agree, was a shortage of screwdrivers.

In its current configuration, VAMPIRE cost about $90,000 to build. That is less than the price of a single node for IBM’s least expensive supercomputer, the SP-1. In addition, two VAMPIRE nodes are more powerful than one SP-1 node, says Tackett.

Homebrew projects like this are possible because computer components have become standardized commodities, Sheldon points out. “That allows us to shop around for the best price on individual components with the confidence that the pieces will all work together.”

Another critical element has been the development of Linux, an operating system that is particularly suited to this kind of application. Linux is an “open source” version of Unix, a scientific operating system originally developed by AT&T that is the standard for basic research applications. Open source software is developed, distributed, and upgraded for free by independent programmers. Using Linux saved the project thousands of dollars in software licenses, according to the researchers.

In 1994, Sheldon and his colleagues in the physics and astronomy department built a smaller “workstation farm” with a $250,000 grant from the National Science Foundation to perform the computations required by their projects, such as an experiment that Sheldon is participating in at the Fermi National Accelerator Laboratory in Batavia, Ill. that studies the behavior of quarks, the tiny particles that make up the protons and neutrons that reside in the nucleus of the atom. With the prospect of new experiments that will produce even more data, the physicists were looking for a way to boost their computer power.

Last year, Moore, whose research also requires a large amount of data processing, received a campus grant to finance the purchase of a larger, faster computer. He learned about the physics department’s workstation farm, contacted Sheldon and the impetus for VAMPIRE was born.

After their initial success, the VAMPIRE team would like to grow the system into one of the largest Beowulf computer arrays in the country. They envision doubling, tripling, quadrupling the number of nodes and linking them with new, high-speed networking capabilities that should significantly jump up the system’s performance.

“VAMPIRE provides campus investigators with an invaluable research tool,” says Sheldon. “It will allow them to compete successfully for research projects that involve intensive computation, as well as bringing increased funding specifically targeted to support computer facilities to campus.” Visit http://www.vampire.vanderbilt.edu for more information.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This