SUPERCOMPUTERS FORETELL COSMOLOGICAL FINDINGS

October 6, 2000

SCIENCE & ENGINEERING NEWS

San Diego, CALIF. — Jack Lucentini reports that when scientists released a map in June showing results of the biggest telescope survey of the universe to date, the map’s major features turned out to be pleasantly familiar to a group of cosmos computer engineers.

Those researchers had already created striking simulations of the universe’s large-scale structures on supercomputers – using, instead of telescopes, equations representing the laws of physics.

The real sky map, then, helped scientists identify which assumptions used for the simulations were most accurate. This in turn helped answer a host of questions about the origins and likely future of the universe.

In recent years, a data dialogue and exchange between observational and computational astronomy has yielded an unusual convergence and clarity among those trying to explain the mysteries of the universe.

Supercomputers, powerful machines that perform millions or billions of calculations per second, have become a crucial supporting tool for space research.

Researchers use the computers to study questions ranging from the big ones just mentioned to finer points, such as how galaxies, stars and planets formed. The field has come into its own since a handful of researchers started making the first simulations in the early 1980s.

“Right now, computational astrophysics is probably equal in size to observational astrophysics” as a field, said Mordecai-Mark Mac Low, assistant curator in the department of astrophysics at the American Museum of Natural History in New York.

But the limitations of the machines are frustrating scientists, just as they start to close in on answers. Computers capable of making truly realistic simulations are still several years away, experts say.

The simulations used for comparison with the recent galaxy map illustrate both the triumphs and the shortcomings of the technology.

An international collaboration of researchers called the Virgo Consortium performed the simulations using a 512-processor Cray supercomputer at the Max Planck Society in Garching, Germany.

In 1998, the group released the largest cosmological simulation to date. It showed how tiny ripples in space, left over from the original explosion that created the universe roughly 13 billion years ago, became giant galaxies clusters under gravity’s influence.

The simulations showed galaxies gathering into a vast, cobweb-like network spanning the observable universe. The structures were strikingly similar to those shown by the galaxy map released two years later, by British, Australian and U.S. researchers in a project called the Two-Degree Field Galaxy Redshift Survey. The simulations were considered invaluable in explaining the observed results.

“It’s only through those simulations that you can understand how the tiny little ripples in the early universe can grow into galaxies,” said John M. Blondin, associate professor of theoretical astrophysics at the University of North Carolina, who was not involved with the projects.

The simulations assumed a universe with an invisible energy causing it to expand ever more quickly. This factor, called the cosmological constant, had been suggested by observations of distant exploding stars two years earlier.

The comparisons between the simulations and the actual sky as revealed by the mapping project strongly bolstered the evidence for this energy. This indicates that our universe may well expand forever, eventually becoming a cold, nearly empty void as the stars die out one by one.

Similar computations were conducted in the United States by the Grand Challenge Cosmology Consortium, a collaboration of researchers from Princeton, the Massachusetts Institute of Technology, and several other universities.

This team, working at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign and the Pittsburgh Supercomputing Center, succeeded in explaining a riddle that had puzzled scientists for decades.

In 1997, the group simulated Lyman Alpha Clouds. These are vast seas of hydrogen gas that appeared to float between the galaxies. Researchers had been mystified as to how they avoided being sucked into the galaxies by gravity.

Over the years, “Various ad hoc models were proposed for how they stayed as separate entities,” said Renyue Cen, a senior research astrophysicist at Princeton University and a team leader with the Grand Challenge group.

“We are the first group to have done the cosmological simulation of these clouds without assuming any ad hoc physical conditions, and showing that these clouds were actually natural products of the molecular structure of the [early] universe,” he explained.

The simulations backed up a theory that the universe is made up mostly of “cold, dark-matter” – oceans of slowly moving particles which are undetectable by our telescopes. Scientists increasingly believe this stuff is the dominant feature of our universe.

But one limitation of such whole-universe supercomputer simulations is that they failed to resolve the small-scale structure of the universe, individual galaxy clusters and galaxies. The computational power wasn’t there. Explanations of the universe thus remain incomplete.

Galaxy simulations have been done separately. The American Museum of Natural History, for instance, is putting together a supercomputer called GRAPE 6 that will calculate the orbits of galaxies and stars.

The machine, which museum officials say will be the fastest computer in the world when it is completed in 2001, will help answer the still murky questions of how stars and galaxies formed.

But the GRAPE 6 performs a relatively simple calculation repeatedly – the law of gravity. More complicated is the task of calculating the several, or dozens, of factors that affect the real universe: radiation, temperature, shock waves and more.

And that requires tying together the large-scale structures of the universe with the smaller-scale pieces such as galaxies, Mac Low said. This is the real sticking point of current supercomputer technology, he said.

The reason, he explained, is that while it has been relatively simple to make machines with increasing computing power, it is much harder to make the growing numbers of processors – the computers’ “brains” – communicate effectively. The next few years of research will be along those lines, he predicted.

“Modern galaxy-formation models are developing galaxies that are much too big. The missing piece of physics may be shock waves” from exploding stars, he explained, for which current simulations don’t account. “That’s the tie back to the larger scale.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This