IBM’S BLUE GENE TEAM TOUTS FOR COLLABORATORS

October 27, 2000

by Christopher Lazou, HiPerCom Consultants, Ltd.

San Diego, CALIF. — Over a year ago IBM announced the Blue Gene project, promising to develop a Petaflop/s computer to study protein structures. This machine is a hundred times more powerful than the present 10 Teraflop/s computer installed at Lawrence Livermore Laboratories, USA, and also developed by IBM. To achieve Petaflop/s performance a million processors are needed working in tandem without failures solving one problem, namely, the direct simulation of a protein structure. This is unchartered territory; how to get the hardware working reliably is a gargantuan engineering task and modelling the science part is at least as challenging.

Dr. Dennis Newns (from IBM’s Computational Biology Group at the T.J. Watson Laboratory, New York) visited the University of Cambridge, UK, 19th October. He was touting for scientific collaboration especially with scientists at the Sanger centre, (named after the British researcher Frederick Sanger – 1980 Nobel prizewinner for his 1977 sequencing technique work), responsible for the Human Genome Project (HGP), in the UK. Newns gave a seminar with the title: “The Blue Gene Petaflop Supercomputer Project, early milestones and Science Challenges”

The lecture used as a starting point the Human Genome Project and the new research avenues which it opened. One of these is the study of protein structures. This can take two forms, data mining of the DNA mapping plus experiments or more daringly a frontal attack by direct computer simulation. This includes the simulation of both ion channels and protein functions as for example membrane transmissions. This is an exciting new development in biotechnology with enormous lucrative business potential. Note that protein mulfolding is highly toxic to life, one example of this is the mad cow disease, which devastated the beef industry in the UK.

When one looks at the computational aspects of protein folding using a free energy funnel, which allows dealing with a small section of space rather than all configurations, it still requires ten to the power of fifteen instructions per second to perform a realistic simulation, hence the birth of the Blue Gene Project which has at its heart a Petaflop/s computer.

IBM is not known to have super fast processors, only Power 3 and next year Power 4, which are an order of magnitude slower than the proprietary processors produced by Japanese vendors, for example, NEC with their SX5 processor technology adapted and used in the 40 Teraflop/s Japanese Earth Simulator, so how does IBM hope to deliver a Petaflop/s machine with this type of technology in the next four years?

According to Dennis Newns, the design of the processor has been more or less completed and likely to be frozen in the next two to three months. The current design envisages a special processor with a constraint instruction set, (57 instructions to the normal 256 plus) and limited 4 Mbit DRAM memory on the chip. Each chip will house 32 processors, and in addition to the DRAM memory it will have a small amount of fast SRAM memory for data staging allowing for two instructions per clock cycle. Each processor thread will have a 2nanosecond latency but since there are 8 threads running in parallel the latency will be amortised so that each chip will have a 32Gflop/s peak performance. Even with this performance on a chip one needs 32 thousand chips to get a Petaflop/s rate. You will need a very large computer room full of computer racks and at least 2 MWatts of electrical power supply.

The architecture chosen uses a cube with a 1Gbit link, reminiscent to the INMOS transputer. It has 1GByte bandwidth which according to preliminary simulations should be sufficient for this particular protein folding application.

There is no reason to doubt that Blue Gene will be built, the question is how to keep system integrity with 32 thousand chips. This is no mean feat since any chip failure will require connection re-routing and re- balance of atoms. One proposal is to mirror the calculations and also perform frequent check points comparing the results for every time step.

Assuming that the system failure rate is infrequent so that it remains stable enough to get results, how much of the peak will be translated into sustain performance is currently any ones guess. IBM is of course currently doing simulations which should tell whether the chip will work or not, it is the size of the machine which is the biggest unknown. Note that for N chips theory requires communication speeds to increase NlogN to keep pace so the communication bottleneck will reduce performance at least an order of magnitude unless some way is found to amortise this.

IBM and some of their collaborators in various universities have been working on smaller problems to establish whether protein structure stability is sensitive to force field and whether folding rate depends on topological complexity of fold. The results from the few simulations on folding dynamics of small peptides to-date are very positive.

At present to check stability of fold they use umbrella sampling calculations for force fields and even this restricted method for a 36 residue protein with ten to the power of eight time steps required 3 months of dedicated computing on a 256 Node Cray T3E.

The Blue Gene project expect to improve on this, folding an 80 residue protein with ten to the power eleven time steps in 3 months. The insights gained in understanding the mechanisms controlling biosystems has a great potential for the design of a plethora of new products spanning the agriculture industry, the life sciences and biomedical technology.

Finally, Dr. Newns, stated that the Genome project has open an enormous new field in biotechnology and in 50 years from now those alive will view current research in the same light as we view a UNIVAC computer of the late 1950’s and compare it to present Teraflop/s machines. It is also the fastest growth business around with lucrative opportunities for computer vendors to deliver the essential modelling systems, for designing the new biotechnology based products.

A number of companies are already actively involved, such as, Celera Genomics founded by Dr. Venter, raising fears and fanning an ethical debate about the “ownership” of humanity’s genetic heritage.

In Europe, in addition to HGP participants many genomic research projects received support from the EU. For example, the Quality of Life programme, funds genomic research concerning human complaints, such as cancer, infectious diseases, inherited deafness, autism, muscular dystrophy and so on. Other projects focus on genomic tools for developing diagnosis and treatment methods.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This