THE DANCE OF TWO BLACK HOLES

October 27, 2000

by Michael Schneider, Pittsburgh Supercomputing Center

Pittsburgh, PA. — Once upon a time, on a small planet in a galaxy called the Milky Way, black holes were considered a fascinating theoretical artifact from the mathematics of general relativity – interesting concept, great stuff for science fiction. We’ve come a long way since 1915 when Einstein laid out his theory that rocked our world.

In 1969, American physicist John Wheeler coined the phrase that gives resonance to the concept of points in space-time where matter is so condensed, gravity so fiercely omnivorous, that it swallows everything, including light, that gets too close. Only 12 years ago, with observational evidence beginning to trickle in – swirling gas and star coalescence at the center of galaxies – Stephen Hawking wrote, prophetically, in A Brief History of Time: “The number of black holes may well be greater even than the number of visible stars.”

Since 1994, the Hubble Space Telescope and, more recently, NASA’s Chandra X-ray Observatory have convincingly lifted black holes from theory into reality. With data from these eyes in space, scientists have identified over 30 likely black holes and counting. They come in a range of sizes, from supermassive (like the monster with the mass of 30 million suns at the center of the Andromeda galaxy) to many that are small ( a few solar masses) and most recently a middleweight (about 500 solar mass) in galaxy M82.

Still, even with Hubble and Chandra, the evidence is circumstantial. Fundamentally, a black hole is invisible. Looking for one, as Hawking said, is like trying to find a black cat in a coal cellar. The observations offer reasoned surmises about an undetectable agent lurking in the interior of detectable phenomena. As Penn State astrophysicist Pablo Laguna and post-doctoral fellow Deirdre Shoemaker like to point out, the way to clinch, indisputably, that black holes exist and that Einstein’s equations are right is to detect gravity waves from two black holes.

Detecting gravity waves is the job, a big one, cut out for LIGO, Virgo and GEO600. LIGO (Laser Interferometer Gravitational-Wave Observatory) is two NSF-funded gravity-wave detectors – in Louisiana and Hanford, Washington – now undergoing testing. Virgo and GEO600 are under construction in Europe (near Pisa, Italy and in Germany). Together these projects represent a pioneering effort that scientists hope will lead the way to an invaluable new set of eyes – gravity eyes – for seeing the universe. But it won’t be easy, especially since no one ever has detected a gravity wave.

Along with anticipating black holes, Einstein’s theory predicts that accelerating movements of massive objects in space, such as supernova explosions and black holes, will produce ripples traveling at light-speed through space-time. As with black holes, there’s indirect evidence he was right, but compared to other wave phenomena, like electromagnetism, which brings us radio and TV, gravity waves are very weak. Einstein speculated they might never be detected. If you think of LIGO as the gigantic antenna for a radio receiver, the strongest possible signal might be a faint crackle as you turn the dial. To improve the chances of hearing the first crackle of gravity from the cosmos, LIGO needs to know where to set the dial to tune in two black holes colliding with each other.

To do this, researchers like Laguna and Shoemaker are using supercomputers, the most powerful they can find, to numerically solve Einstein’s equations. Their field is called numerical relativity, and with collaborators at the University of Texas and the University of Pittsburgh, Penn State has assembled one of the leading groups in the world. In recent work, relying on systems at PSC, at NCSA in Illinois and elsewhere, this multi-university team successfully simulated two black holes merging in what’s called a grazing collision – only the second time this has been accomplished. Their numerical approach, called black-hole excision, makes a notable dent in the two-black-hole problem, the major challenge of this challenging field.

“Einstein’s equations describe gravity via an elegant but complicated set of non-linear partial differential equations,” says Laguna. “Their complexity requires the most powerful supercomputers available. Accurately solving the two-black-hole problem, formulated conceptually by Einstein 80 years ago, will represent an historic moment in the development of general relativity theory, with extremely important implications for astrophysics and cosmology.”

The mathematics of a single spherical black hole sitting and spinning in space was worked out long ago by German astronomer Karl Schwarzschild, who in 1917 from his deathbed in effect discovered the black hole, without naming it, as one of the implications of Einstein’s theory. A single black hole by itself, however, doesn’t make gravity waves. Add another black hole, the interesting and many believe very relevant situation of two black holes merging with each other – often called a binary black hole – and you fiendishly complicate the mathematics, to the point where the only hope is supercomputers.

“As in most physical studies,” says Shoemaker, “you want to look at the complicated and more realistic situations to test what you know. With general relativity, you can’t put two of these compact objects together and get a solution without advanced computational techniques. Two black holes takes the theory into a dynamical regime, where you can make predictions and then, if experiments verify the predictions, you know how far the theory is correct.”

It’s a mutually beneficial relationship. To verify the predictions, you need detectors. LIGO, Virgo and GEO600, likewise, need predictions. Many believe that colliding black holes is the best shot at detecting gravity waves. Theory says it’s one of the strongest signals on the gravity-wave dial. To know if a crackle of static is the dance of two black holes or cosmic noise, the detectors need the answers numerical relativists are working to provide.

“Abandon hope, all ye who enter here,” said Dante of the entrance to Hell. He might have said the same about the event horizon of a black hole. In solving Einstein’s equations, Schwarzschild started with the idea of an infinitely condensed mass and showed that space-time curves around it and closes on itself. Once matter or light enters space-time within a certain radius from that point – initially called the Schwarzschild radius, now the event horizon – there’s no escape. The region inside the horizon is cut off from events outside. This principle, called cosmic censorship, underlies black-hole excision.

The killer for simulating black holes is the singularity, the point of infinite density and space-time curvature that, mathematically speaking, makes a black hole a black hole. “The most crucial aspect of numerically evolving spacetimes containing black holes,” says Laguna, “is without doubt the accurate and long-term handling of the singularities these objects represent.”

Simply put, the numbers get too big too fast, and the computation crashes. “If you get too far inside the black hole,” says Shoemaker, “you run into huge gradients that kill your calculations. There are basically two alternatives. In one of them you exploit the relativity of time; in effect you slow down how fast clocks tick near the black hole to avoid approaching that area. The other way is to remove the dangerous area. We did the latter.”

The first approach, avoiding the singularity, has been more popular, and a group at the Albert Einstein Institute near Berlin has employed it with some success. It has the drawback that to slow down time inevitably adds to the already severe computational demands. With software they call AGAVE, the Penn State-Pittsburgh-Texas team has taken the less-traveled road of surgically removing the singularity from the domain of the calculation. About two years ago, their Pittsburgh collaborators successfully excised the singularity for a single black hole moving in space. AGAVE extends this approach to colliding black holes, in effect, simulating two black holes without the black holes.

How, you might ask, can you compute gravity waves from a black hole if you eliminate the black hole? The secret, says Laguna, is in the horizon. Cosmic censorship. Since information about anything across that threshold is cut off, physical processes outside the horizon aren’t affected by what happens inside. “As long as the spacetimes with and without the singularities agree at the points where the cut is made,” says Laguna, “both situations should be equivalent for an observer outside.”

Much easier to say than implement, notes Shoemaker. The numerical intricacies of cutting out the hole from the grid-like domain of the computation and, at the same time, keeping track of its movement in time, are daunting. Using PSC’s CRAY T3E, AGAVE underwent extensive development and testing prior to the grazing collision simulation.

The grazing collision is a milestone – compared to the symmetry of a head-on crash, which has been done before – because it adds a layer of complexity and realism. With 40 processors of NCSA’s SGI Origin 2000, it required nearly 100 hours. There’s simplifying assumptions, such as two equal mass black holes, but the result is, you might say, a smashing success that pushes beyond prior work.

Excision tamed the numerical instabilities of the singularity long enough for the two black holes to merge completely and evolve for a short period as one large black hole before the simulation crashed. It’s not the end of the road by any means, stress Laguna and Shoemaker. There’s not yet accurate gravity-wave predictions to hand over to LIGO. But the next mountain now looks more climbable. That mountain, two black holes that orbit each other before they coalesce, is a few years away say the researchers.

Further help is coming, notes Laguna, whose eyes light up thinking of PSC’s new terascale system, more than 2,700 powerful processors with a peak capability of over six-trillion calculations per second, a leap forward that will allow the team to push further with AGAVE. “We believe one of the severe problems we have now is that the merged black hole gets too close to the boundaries of the computational domain. With the new machine, we can shift the outer boundary outward.”

Some day, not that far away, a crackle of static will come in from the cosmos. Was Einstein right? Are there really black holes? When two of these monsters swallow each other, does it create a tidal wave of gravity detectable on our tiny planet thousands or millions of light years away? Please place your bets now.

More information, including graphics: http://www.psc.edu/science/laguna.html

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This