MARSHALL INSTITUTE CHALLENGES CLIMATE MODELING

November 7, 2000

FEATURES AND COMMENTARY LIVEwire

Dallas, Texas – The U.S. National Assessment of climate change won’t provide policymakers or the public with useful information because it relies on computer climate models that are incapable of making accurate regional predictions of global warming, according to a study released today by the George C. Marshall Institute.

The study’s author, Dr. David Legates, who is Associate Professor of Climatology in the Center for Climatic Research at the University of Delaware, noted that “these models, which are intended to describe climate only on a very large scale, are currently used by the National Assessment to describe possible scenarios of regional climate change in the U.S.”

“Because current models cannot accurately represent the existing climate without manipulation,” Legates noted, “they are unlikely to render reliable global climate scenarios or provide useful forecasts of future climate changes in regions of the United States as small as the Midwest, West or South.”

The study explains how General Circulation Models (GCMs) work and why the attempt to forecast complex climate factors such as atmospheric changes, the interaction of land, sea, and air, and the role of clouds in climate is so difficult. The strengths and weaknesses of climate models are discussed and the report shows how GCMs are used to answer important questions about global warming.

The two climate models used in the U.S. National Assessment are then described with reference to their similarities and differences. The limitations of these models — the Canadian Global Coupled Model and the Hadley Climate Model from Great Britain — are outlined with emphasis on their inability to provide useful regional scenarios of climate change.

The Marshall report concludes with an analysis of how well these two models reproduce the present-day climate as a benchmark for their ability to predict future climate.

Key findings in the report include:

— Our incomplete understanding of the climate system and our inability to represent this imperfect understanding mathematically limit the usefulness of the current GCMs.

— The two models have significant problems in representing the land surface: for example, the western United States is represented simply as one large slope beginning at the Pacific Ocean and descending into the Great Plains, so that the role of the coastal plain, the most densely populated area of the western states, is ignored.

— It is common practice to “tune” GCMs to make them represent current conditions more accurately, but the very fact that the GCMs need this manipulation casts serious doubt on their ability to predict future conditions. Because all factors are interconnected in climate modeling, an error in one field will adversely affect the simulation of every other variable.

— To reduce complexity and computational time, GCMs treat surfaces as uniform and average the flows of moisture and energy between the land surface and the atmosphere over large areas. But the extensive variability of the land surface and the effects that even small-scale changes can have make modeling land-surface interactions quite difficult.

The National Assessment itself recognized that both models that it selected provide a more extreme climate change scenario than other models that were available and that had been developed in the U.S. Both models offer incomplete modeling of the effects of individual greenhouse gasses, including water vapor and atmospheric sulfates. The CGCM1 in particular fails to model sea ice dynamics and offers a simplistic treatment of land-surface hydrology.

Predicted temperature increases over various regions of the United States differ considerably between the two models; these predictions fail to correspond with observed precipitation variability and contradict each other. In general, the Hadley model simulation is closer to the observed climate in the United States than the Canadian simulation, although both models produced considerable differences from observations. This, again, casts serious doubt on the models’ ability to simulate future climate change. Given these uncertainties, the report concludes, using the available GCMs to assess the potential for climate change in specific regions is not likely to yield valid and consistent results.

GCMs can provide possible scenarios for climate change, but at the present level of sophistication, they are not reliable enough to be used as the basis for public policy. Using GCMs to make predictions about local climate change in the United States is deeply flawed, and can only lead to deeply flawed policies.

The U.S. National Assessment of the Potential Consequences of Climate Variability and Change for the Nation intends to “provide a detailed understanding of the consequences of climate change for the nation.” The Assessment’s findings, called the National Assessment Synthesis Report, will be published in the near future.

The George C. Marshall Institute is a not-for-profit science and public policy research group located in Washington, D.C. Detailed information on the Institute can be obtained on its web site ( http://marshall.org ) or by calling 202-296-9655.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire