MEMS THE WORD

November 9, 2000

FEATURES & COMMENTARY LIVEwire

Dallas, Texas — As scientists study interactions at incredibly small levels, the implications of their work grow larger and larger.

Imagine an automobile air bag system that can calculate not only when but with how much force, to deploy an airbag based on the passenger’s size and weight. Picture a home water filter system that monitors pollutants as they pass through, sensing when levels rise too high and automatically adjusting the filtration process. Or, think about working in an office that could sense the your movements and reconfigure the office technology accordingly – for example, from shared video conference to private work mode.

Welcome to the world of microelectromechanical systems (MEMS), an emerging field that uses microfabrication techniques to bring together electronic circuitry and three-dimensional structures and devices such as sensors and acuators onto silicon chips. In these systems that are measured in the millionths (micrometers) and billionths of a meter (nanometers), a working gear, sensor, or filter may be no larger than a grain of sand. More importantly, the behaviors of particles and individual electrons at this scale don’t follow the rules of classical physics. Engineers and scientists are working to document the basic behaviors of particles and electrons on the micro- and nanoscales. Their work could bring about reliable, low-cost integrated systems-on-a-chip that are “smart” enough to sense and respond to the needs of the user.

“Our ultimate goal is to create embedded systems that result in smart surfaces,” says Umberto Ravaioli, a University of Illinois electrical and computer engineering professor and a researcher with the Alliance Nanodevices team. Ravaioli says scientists are “just beginning to get their feet wet” in MEMS. He is one of three U of I researchers who are dipping their toes into the field by using the Alliance’s high performance computing systems at NCSA to conduct research into the behavior of air particles as they flow through microfilters no more than the diameter of a human hair. Narayan Aluru, an assistant professor in the U of I department of general engineering and a researcher in the Beckman Institute for Advanced Science and Technology, and graduate research assistant Ozgur Aktas, are also part of the research project.

The research team is looking at how very small airborne particles flow through the microfilter’s elements, tiny holes that are no larger than 1 micrometer. These miniature filters are used to sift very small particles such as spores and bacteria. The entire filter array is usually only a few micrometers in diameter, or about the size of a quarter. As a micromechanical component of MEMS, these filter elements are often micromachined onto silicon. For example, a hand-held device to detect gas leaks could include not only a gas spectrometer small enough to fit on a chip but also a microfilter that would sift out extraneous particles such as dust. Including a microfilter on the chip would effectively purify the gas and allow the spectrometer to detect only the components it was designed to detect.

“At this point we need to study the behavior of these particles under various conditions because we don’t know much about the behavior of gases at this level,” says Aluru. “Computer simulation is the closest we can get to observing what happens in the real world.”

Aluru used funding from the NCSA Faculty Fellows program as seed money for the current research project. The Faculty Fellows program awards grants to faculty on the U of I’s Urbana-Champaign campus for research projects that could benefit from the use of NCSA or Alliance computing resources. The researchers are running simulations on NCSA’s NT supercluster and SGI Origin2000 supercomputer using Direct Simulation Monte Carlo (DSMC) techniques to simulate the behavior of air particles in filters ranging in size from .05 to 1 micrometer. The DSMC method samples a significant number of the particles as they flow in, out, and around the intake area of the filter element. From this random sample, the researchers draw general conclusions about the behavior of the particles.

The team’s first simulations involved about 5 million molecules flowing through the filter element. Each simulation-one on the NT supercluster and one on the Origin2000-used 64 processors for about 14 hours. An accurate 3D simulation of all flow features of a microfilter element would require about 300 million molecules, something that is practically impossible even on the best of today’s supercomputers. To address this problem, the team is developing new multiscale methods of computing and simulating their data.

The team’s simulations track a wide range of conditions such as air pressure and temperature at different flow rates as well as differences in pressure at the filter’s intake and output points. The simulations follow each of the millions of molecules on their journey through the microfilter, noting when they flow smoothly through the filter, when they hit the walls of the filter, and when they collide with each other. Understanding these basic behaviors of gases at this level, says Aluru, can help answer some elementary design questions, such as the optimal shape of a microfilter or how much pressure a tiny filter can take before it bursts.

“There are some basic engineering questions that need to answered,” notes Aluru. “We need to know about the effects of pressure differences between intake and output, the effects of more or fewer [filter] holes, how the roughness of the surfaces effects flow, or what happens when you reduce the interactions among gases.”

Results so far show that the behavior of filter elements is not governed by classical models of fluid transport. In addition, surface conditions in the filter elements-such as roughness and how particles interact with the surface of the filter-play important roles in determining the behavior of particles at very small scales. Additional 3D simulations will provide even more insight into the behavior of particles at this scale and will lay the foundations for developing nanoscale filter elements, Aluru predicts.

“We’ve learned a lot, but there’s a lot more that needs to be done,” says Ravaioli. He hopes that in the not-too-distant future, simulations of the workings of entire microelectromechanical systems will be possible-simulations that could require as many as 40,000 processors on clusters or Origin2000 systems.

“This is an emerging discipline that will require an enormous amount of compute power,” he says. “It will push the development of terascale computing systems.”

This research is supported by the Defense Advanced Research Projects Agency, the NCSA Faculty Fellows Program, and a University of Illinois Computer Science and Engineering Fellowship.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire