QUANTUM LEAP IN NET SECURITY: SINGLE PHOTONS ON DEMAND

November 9, 2000

FEATURES & COMMENTARY LIVEwire

Dawn Levy has reported that information flooding the ever-evolving Internet will increasingly take the form of light pulses streaming through fiber-optic cables. But fiber optics brings both solutions and problems. Conceivably, hackers could use beam splitters to divert streams of light and access confidential information without being detected. But if a message were carried by a lone photon — the smallest discrete quantity of light, called a quantum — it would be easier to detect intruders.

“If you have only one photon per pulse, you would immediately know that an eavesdropper had penetrated the system because the receiver at the opposite end could tell that the data had been disturbed,” says Stanford chemistry Professor W. E. Moerner.

He and visiting research associate Dr. Brahim Lounis, now at the UniversitÈ Bordeaux in France, were the first to use lasers to get single molecules to emit single photons on demand at room temperature. The achievement, published in the Sept. 28 issue of the journal Nature, takes cyberspace a quantum leap closer to secure communications.

While quantum communication is still futuristic, Moerner says, it aims to provide the ultimate in secure information transfer. In the next five or 10 years we may use quantum information technology to send messages over channels one photon at a time. Or we may employ quantum cryptography, which uses signals from a single photon to transmit an electronic “key” to decode encrypted messages.

“You want to minimize the probability of emitting two [or more] photons for every pulse because that would allow an eavesdropper to split off one of those photons and read your key without your knowing it,” Moerner says.

Until Moerner and Lounis’s work, the only way to coax single photons from a pulsed laser at room temperature was by attenuation — that is, making the laser beam weaker and weaker until each pulse carried only a small number of photons.

But attenuation is an inefficient way to produce single photons. “You’ll mostly get zero photons per pulse and then a small probability of one photon per pulse and an even smaller probability of two photons per pulse,” Moerner says.

Moerner and Lounis’s system is much more efficient. It can produce single photons 86 percent of the time. It produces no photons 14 percent of the time, and two photons, hardly ever. That nearly zero probability of two-photon emission could be used to ensure the immunity of quantum communications against hacker attacks.

But is getting a single photon 86 percent of the time good enough for communications applications? “It’s far, far better than what [researchers] have now,” Moerner says. “It’s a complex issue of what ‘good enough’ for applications is, but certainly big improvements in efficiency and simplicity help. What they typically work with now is single-photon probabilities around 10 percent or less.”

The system in essence turns a single molecule into a light source. But it’s not a classical light source like a lamp, where the light-bulb filament heats up and many photons boil chaotically off the filament surface. This light source is quantum-mechanical, emitting only one photon at a time.

“The beauty of this whole idea is that it’s so straightforward,” Moerner says. “A simple room-temperature apparatus can generate this quantum mechanical light source.”

How does it work? Short, fast pulses of infrared light shoot out of a laser. But red is not an energetic enough color (wavelength) for the purposes of the experiment, so the light next travels through a device called a second harmonic generator that halves its wavelength and doubles its energy. The light that emerges is green, which is energetic enough for the experiment. The light then enters a scanning confocal microscope, which focuses the beam on a thin crystal flake. The flake is made of a very small number of single terrylene molecules embedded in a crystalline slab of p-terphenyl molecules. By moving the laser, scientists can aim the beam at a single terrylene molecule. Light hits the single molecule with the right amount of energy to “pump” it from its ground state to its excited state, causing it to — voil‡! — release a single photon.

Moerner, previously at the University of California-San Diego for three and a half years, and IBM Almaden for 13 years before that, has been at Stanford only a year and a half. He funded the project partly with Stanford money and used equipment that was purchased with a prior grant from the National Science Foundation.

“We like to explore single molecules any way we can,” says Moerner, whose group of six graduate students and postdoctoral scholars currently is concentrating on studying the behavior of single protein molecules.

In 1989, his group at IBM was the first to use lasers to select, probe and measure the properties of individual molecules. Similarly, Steve Chu, a professor in the departments of Physics and Applied Physics, and his research group have used lasers to study the characteristics of single polymers, or chains of repeating molecules. Other Stanford researchers using lasers to study single molecules include Professors Richard Zare (chemistry), Steven Block (applied physics and biological sciences) and James Spudich (biochemistry and developmental biology).

And one other Stanford researcher uses lasers to produce lone photons. But his method doesn’t use single molecules. At extremely low temperatures (near absolute zero), Yoshihisa Yamamoto, professor of electrical engineering and applied physics, has created an electronic “turnstile” that allows passage of a single photon — or multiple photons if desired — in a controllable way.

Practical single-photon sources may be implemented in real-world communications systems in five to 10 years, Moerner predicts: “There are a number of research projects at major labs. There’s been a group at IBM, for example, working on a quantum communication channel. There’s no product at the moment, but it’s in the development stage.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire