LETTER TO THE EDITOR – INTERNET COMPUTING POTENTIAL

December 8, 2000

FEATURES & COMMENTARY

San Diego, CALIF. — This is continuing a discussion about “Supercomputing Takes Yet Another Turn” (18939, 11.23.00). In a letter to the editor (18977, 12.01.00), Nigel Healy, takes exception to the title and suggests “New Uses for the Internet” instead. He also lists some challenges in the Internet Computing field, suggesting that IC may not be viable for true Supercomputing.

Although it does differ in significant ways from conventional Supercomputing, and there are some challenges, Internet Computing clearly does support many types of large-scale computing, including many high-performance computational science applications typically done on Supercomputers.

As [email protected] ( setiathome.ssl.berkeley.edu ) has shown, very large-scale computation can be accomplished in this way. Recently, [email protected] statistics stated that over a 24-hour period ending 12/1/00, their collection of computers had achieved over 28 TeraFLOPs/sec. Since they duplicate computations (as a security measure), the real throughput is half of that, which is still an extremely impressive 14 TeraFLOPs/sec. This is not just theoretical maximum speed, but real, sustained computation.

The top ranked computer on the Top500 list ( www.top500.org ) is the ASCI White SP Power3 ( www.llnl.gov/asci ), which is rated at 4.938 TeraFLOPs/sec. The Linpack benchmark used for this list measures near-peak performance and typical applications will run much slower (see http://www.top500.org/lists/linpack.html ). But even using the 4.938 figure, that means that [email protected] is delivering more than twice the FLOPs/sec rate of the world’s faster supercomputer (nearly three times). In my opinion, such a system should be considered a supercomputer. That it does so at a fraction of the cost makes it that much more attractive. For those applications that can run in the IC mode, the potential is very great indeed.

But I agree that the title “Supercomputing Takes Yet Another Turn” is somewhat misleading. Internet Computing is an excellent way to do computational science and other types of HPC, but is likely to coexist with conventional supercomputing for a long time, probably indefinitely. Many applications require very frequent, high-speed, low-latency communication between cooperating processors and will require conventional supercomputers for optimal performance. It is not so much that supercomputing is giving way to IC, but that IC is a new and growing type of HPC that supplements existing systems. It is another way to provide high-performance, high-quality, cost-effective computational capability.

The supplemental nature of IC is exemplified by the recent announcement of a major collaboration between Entropia and the PACI centers, NPACI and NCSA. These partners will develop and deploy a number of large-scale IC applications to supplement the conventional supercomputing done at the PACI centers (see “Entropia Creates Largest Computing Resource Ever Available to Academic Scientists,” http://www.entropia.com/press/release_11092000.asp ).

The likely benefit of IC to HPC and to society is tremendous. Already there are many projects in production today, including [email protected], FightAIDSatHome ( http://www.fightaidsathome.org , a collaboration between Entropia and the Olson laboratory at the Scripps Research Institute), and Stanford’s [email protected] ( http://www.stanford.edu/group/pandegroup/Cosm/ ).

I have worked in the Supercomputing field for over 20 years now and have been fascinated by the potential of IC applications since learning of [email protected] a year and a half ago. Last summer, I had the opportunity to participate in one such venture and joined Entropia. I believe that Entropia is well on its way to success, with the developing technology, talent, and vision to address the technical challenges and achieve its goals. We are building on three years of real-world experience (see GIMPS, the Great Internet Mersenne Prime Search, http://www.mersenne.org/prime.htm ).

I’ll comment briefly on the expressed concerns about Loadbalancing, Security, Robustness, and Economics.

Economics is rather interesting. The Entropia client makes use of computer cycles that would otherwise go to waste. This is commonly known as “cycle stealing” but “recycling” would be a better term since nothing is stolen. The Entropia client includes a screen-saver, but it does not require the screen saver to rescue cycles from the idle loop, in 1/100th of a second. It gets out of the way immediately when other uses of the machine are needed. Thus, the economics are that the computing power is essentially free; wasted computing and electrical power can be put to good use. And since it is generally a good idea to avoid powercycling a computer, work PCs and workstations often sit totally idle overnight and on the weekends. Home PCs also sit idle periodically.

Loadbalancing can be a concern for some applications but not all. A unit of work is distributed to a client, and it is returned when complete. There is a steady, massive stream of work units to be done. Applications that do have a need for loadbalancing can be accommodated by scheduling jobs on the appropriate subset of client hosts. This is an area of active development at Entropia, part of our efforts to ease the integration of a wide variety of applications into our IC system.

A significant portion of the Entropia infrastructure and development efforts address security through the use of encryption, authentication, and sandbox technologies. Of course, there is no such thing as perfect computer security, but an effective trade-off can be made. In many applications, data security is not a significant concern, or the individual pieces are unintelligible without the whole being known. Key results can be verified independently. In [email protected], for example, when the IC system locates potentially interesting portions in the radio telescope data stream, they are reexamined independently.

Robustness of the software is a challenge, due to wide variation in PC configurations and devices. But the client software doesn’t need to deal with every type of device itself and the whole network of clients has to be managed in a manner that can deal with client job failure or network disconnection from a variety of causes. Job retry and recovery is a major component of our infrastructure.

Another challenge, and another potential strength for the IC field, is that, so far, few people thought about how their computational problem might be solved in this unorthodox manner. Instead of trying to make very efficient use of expensive machines, one can make less efficient use of large numbers of inexpensive machines. Some Monte Carlo approaches that are too inefficient on supercomputers may now be viable. Results that are produced too slowly on a single PC (or even a supercomputer) have a completely different impact when they become part of a huge ensemble. ClimatePredition.com, for example, is planning to do millions of year-long runs on PCs. “…we aren’t proposing to parallelize a single model over many PCs, which would indeed be impractical, but to have everyone run their own independent climate model. This is feasible, because for a 50-year climate simulation (unlike a 3-day weather forecast), it doesn’t matter if the results aren’t in for a couple of years.” As more people think about large-scale problems in such innovative ways, additional and unexpected IC applications will be developed.

In short, the potential for Internet Computing is huge. There are technical challenges, but they are being addressed. Applications that can fit into the IC mode of computational science can tap into a resource that is orders of magnitude more capable than might otherwise be available.

In addition to all the other benefits, IC, by its nature, involves large numbers of the public directly in scientific research. The science is done not only by peer-review, but also by citizen choice, and an informed citizenry is a necessity. Such involvement and education of the public is sorely needed, particularly in the United States where the average citizen understands little about science and the workings of the natural world.

I hope you all will wish us luck (and download and run our client software today at www.entropia.com!) The need for large-scale computational power is essentially unlimited and IC can make significant contributions to HPC.

— Wayne Schroeder

Entropia, Inc.

The opinions expressed in this article are those of its author and not necessarily those of the publisher or staff of HPCwire.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This