LETTER TO THE EDITOR – INTERNET COMPUTING POTENTIAL

December 8, 2000

FEATURES & COMMENTARY

San Diego, CALIF. — This is continuing a discussion about “Supercomputing Takes Yet Another Turn” (18939, 11.23.00). In a letter to the editor (18977, 12.01.00), Nigel Healy, takes exception to the title and suggests “New Uses for the Internet” instead. He also lists some challenges in the Internet Computing field, suggesting that IC may not be viable for true Supercomputing.

Although it does differ in significant ways from conventional Supercomputing, and there are some challenges, Internet Computing clearly does support many types of large-scale computing, including many high-performance computational science applications typically done on Supercomputers.

As SETI@Home ( setiathome.ssl.berkeley.edu ) has shown, very large-scale computation can be accomplished in this way. Recently, SETI@Home statistics stated that over a 24-hour period ending 12/1/00, their collection of computers had achieved over 28 TeraFLOPs/sec. Since they duplicate computations (as a security measure), the real throughput is half of that, which is still an extremely impressive 14 TeraFLOPs/sec. This is not just theoretical maximum speed, but real, sustained computation.

The top ranked computer on the Top500 list ( www.top500.org ) is the ASCI White SP Power3 ( www.llnl.gov/asci ), which is rated at 4.938 TeraFLOPs/sec. The Linpack benchmark used for this list measures near-peak performance and typical applications will run much slower (see http://www.top500.org/lists/linpack.html ). But even using the 4.938 figure, that means that SETI@Home is delivering more than twice the FLOPs/sec rate of the world’s faster supercomputer (nearly three times). In my opinion, such a system should be considered a supercomputer. That it does so at a fraction of the cost makes it that much more attractive. For those applications that can run in the IC mode, the potential is very great indeed.

But I agree that the title “Supercomputing Takes Yet Another Turn” is somewhat misleading. Internet Computing is an excellent way to do computational science and other types of HPC, but is likely to coexist with conventional supercomputing for a long time, probably indefinitely. Many applications require very frequent, high-speed, low-latency communication between cooperating processors and will require conventional supercomputers for optimal performance. It is not so much that supercomputing is giving way to IC, but that IC is a new and growing type of HPC that supplements existing systems. It is another way to provide high-performance, high-quality, cost-effective computational capability.

The supplemental nature of IC is exemplified by the recent announcement of a major collaboration between Entropia and the PACI centers, NPACI and NCSA. These partners will develop and deploy a number of large-scale IC applications to supplement the conventional supercomputing done at the PACI centers (see “Entropia Creates Largest Computing Resource Ever Available to Academic Scientists,” http://www.entropia.com/press/release_11092000.asp ).

The likely benefit of IC to HPC and to society is tremendous. Already there are many projects in production today, including SETI@Home, FightAIDSatHome ( http://www.fightaidsathome.org , a collaboration between Entropia and the Olson laboratory at the Scripps Research Institute), and Stanford’s Folding@home ( http://www.stanford.edu/group/pandegroup/Cosm/ ).

I have worked in the Supercomputing field for over 20 years now and have been fascinated by the potential of IC applications since learning of SETI@Home a year and a half ago. Last summer, I had the opportunity to participate in one such venture and joined Entropia. I believe that Entropia is well on its way to success, with the developing technology, talent, and vision to address the technical challenges and achieve its goals. We are building on three years of real-world experience (see GIMPS, the Great Internet Mersenne Prime Search, http://www.mersenne.org/prime.htm ).

I’ll comment briefly on the expressed concerns about Loadbalancing, Security, Robustness, and Economics.

Economics is rather interesting. The Entropia client makes use of computer cycles that would otherwise go to waste. This is commonly known as “cycle stealing” but “recycling” would be a better term since nothing is stolen. The Entropia client includes a screen-saver, but it does not require the screen saver to rescue cycles from the idle loop, in 1/100th of a second. It gets out of the way immediately when other uses of the machine are needed. Thus, the economics are that the computing power is essentially free; wasted computing and electrical power can be put to good use. And since it is generally a good idea to avoid powercycling a computer, work PCs and workstations often sit totally idle overnight and on the weekends. Home PCs also sit idle periodically.

Loadbalancing can be a concern for some applications but not all. A unit of work is distributed to a client, and it is returned when complete. There is a steady, massive stream of work units to be done. Applications that do have a need for loadbalancing can be accommodated by scheduling jobs on the appropriate subset of client hosts. This is an area of active development at Entropia, part of our efforts to ease the integration of a wide variety of applications into our IC system.

A significant portion of the Entropia infrastructure and development efforts address security through the use of encryption, authentication, and sandbox technologies. Of course, there is no such thing as perfect computer security, but an effective trade-off can be made. In many applications, data security is not a significant concern, or the individual pieces are unintelligible without the whole being known. Key results can be verified independently. In SETI@Home, for example, when the IC system locates potentially interesting portions in the radio telescope data stream, they are reexamined independently.

Robustness of the software is a challenge, due to wide variation in PC configurations and devices. But the client software doesn’t need to deal with every type of device itself and the whole network of clients has to be managed in a manner that can deal with client job failure or network disconnection from a variety of causes. Job retry and recovery is a major component of our infrastructure.

Another challenge, and another potential strength for the IC field, is that, so far, few people thought about how their computational problem might be solved in this unorthodox manner. Instead of trying to make very efficient use of expensive machines, one can make less efficient use of large numbers of inexpensive machines. Some Monte Carlo approaches that are too inefficient on supercomputers may now be viable. Results that are produced too slowly on a single PC (or even a supercomputer) have a completely different impact when they become part of a huge ensemble. ClimatePredition.com, for example, is planning to do millions of year-long runs on PCs. “…we aren’t proposing to parallelize a single model over many PCs, which would indeed be impractical, but to have everyone run their own independent climate model. This is feasible, because for a 50-year climate simulation (unlike a 3-day weather forecast), it doesn’t matter if the results aren’t in for a couple of years.” As more people think about large-scale problems in such innovative ways, additional and unexpected IC applications will be developed.

In short, the potential for Internet Computing is huge. There are technical challenges, but they are being addressed. Applications that can fit into the IC mode of computational science can tap into a resource that is orders of magnitude more capable than might otherwise be available.

In addition to all the other benefits, IC, by its nature, involves large numbers of the public directly in scientific research. The science is done not only by peer-review, but also by citizen choice, and an informed citizenry is a necessity. Such involvement and education of the public is sorely needed, particularly in the United States where the average citizen understands little about science and the workings of the natural world.

I hope you all will wish us luck (and download and run our client software today at www.entropia.com!) The need for large-scale computational power is essentially unlimited and IC can make significant contributions to HPC.

— Wayne Schroeder

Entropia, Inc.

The opinions expressed in this article are those of its author and not necessarily those of the publisher or staff of HPCwire.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire