CHEMISTRY WITHOUT CHEMICALS: REACTION PROCESSES

December 15, 2000

SCIENCE & ENGINEERING NEWS

San Diego, CALIF. — One of the most powerful academic supercomputers in the Southeast forms the core of Georgia Institute of Technology’s new Center for Computational Molecular Science and Technology. Installed in October, the 72-processor IBM SP supercomputer allows researchers to study complex chemical processes, modeling the hopping of electrical charges and breaking of chemical bonds at a level of detail no other technique could provide.

Though the results must still be verified experimentally, computational chemistry allows scientists to ask more complex questions and get faster, more detailed answers without mixing the first chemical. The technique provides clues to chemical engineering mysteries that cannot be investigated any other way, and reduces trial-and-error in research.

At the new research center, Georgia Tech researchers study protein folding, anti-cancer drugs, molecules key to the vision process and the polymerization process.

“If you can do the experiments on the computer and try all the ‘what-ifs’ that way, at the very end, the one reaction you really need can be done in chemistry,” said Rigoberto Hernandez, assistant professor in Georgia Tech’s School of Chemistry and Biochemistry. “By finding the very best solution on the computer, you can limit the waste products by eliminating trial and error. This doesn’t do away with experimentation, but it gives the chemist another tool.”

Hernandez studies non-equilibrium reactions in which the reacting chemicals form a large part of the overall environment. In common chemical processes, the reactants make up a small part of the overall environment, which remains in equilibrium, not changing substantially as the reaction proceeds.

But in non-equilibrium systems, the environment changes as the reaction proceeds, affecting the chemistry in ways that are difficult to model and study. This complex interaction between reaction and changing environment affects the outcome in important ways.

“In many cases, the final properties of the material are determined by their history,” he explained. “I want to understand how things are formed, not just to characterize their properties once they are formed.”

Protein folding provides an important example. After being created, proteins fold through a complex chemical process that involves as many as 200 different amino acid residues. Different folds give the proteins different properties. In some cases, such as amyloidogenic proteins associated with Mad Cow Disease, a wrong fold creates a harmful protein: the scrapie form of prions.

“There is increasing evidence that the wrong folds are due to a kinetic or dynamic process,” Hernandez added. “We as dynamicists are asking how a sequence with a given structure goes to that folded structure. By understanding those dynamics, we would be able to say something about altering the sequence and preventing it from folding that way.”

David Sherrill, an assistant professor in the School of Chemistry and Biochemistry and Hernandez’s collaborator at the center, studies electronic structure theory and its application to photochemistry and highly reactive systems. His work has implications for improving anti-cancer drugs, understanding the process of vision and tracing the role of copper in the body.

The enediyne family of anti-cancer drugs provides a vital weapon in the battle against the dread disease. The highly reactive chemicals contain two radicals that steal hydrogen atoms from the DNA of cancer cells, triggering destruction of the cells.

Although experiments have shown the basic steps of the diradical reaction, detailed computer models could give new insights into how to tune the reactivity by adjusting the chemical structures of the drugs. Having that information would help scientists produce better anti-cancer drugs.

These computational studies will require the development of new theoretical techniques because current models can’t accurately describe the highly reactive diradicals, or more generally, any bond-making or bond-breaking processes.

“To get a very detailed understanding of the whole process, going from reactants to products and watching it happen in-between, you usually are breaking chemical bonds,” Sherrill explained. “You would like to be able to describe that theoretically, including the entire reaction path, not just the beginning and the end.”

The IBM SP supercomputer installed at the center in October promises a dramatic increase in the speed at which simulations run, doing in a few hours what would have taken a week of number crunching on smaller computer workstations. It also allows researchers to undertake more complex and accurate simulations that they could not even attempt before.

“This will allow us to do some very high accuracy calculations on some benchmark molecules that were inaccessible before,” said Sherrill. “It will make a tremendous difference.”

Because the reactions Hernandez and Sherrill study are so complex, limits on computing power have forced them to rely on approximations that do not take into account all the variables that could influence the outcome. The supercomputer will alter that trade-off, enabling simulations with fewer compromises.

By speeding up the simulations, the machine will also change the way in which the researchers work, allowing them to be more productive and creative in following up unexpected results.

“If you have a calculation that takes a week for you to complete, you’ve got to have a lot of different things going on at once while you’re waiting for the calculations to be done,” Sherrill explained. “But if you could get the results in a couple of hours, you could immediately see what didn’t work and how to change it. You could be a lot more interactive, and recover more quickly from mistakes.”

Based on IBM’s new copper chip technology, the machine will be shared with other researchers at Georgia Tech’s College of Sciences.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire