NEW TRANSISTOR MAY KEEP COMPUTER EVOLUTION ON TRACK

December 15, 2000

SCIENCE & ENGINEERING NEWS

West Lafayette, IND. — Purdue University engineers have new information contradicting the most dire predictions about the imminent demise of Moore’s Law, a general rule that is central to the evolution and success of the computer industry.

The rule states that the number of transistors on a computer chip doubles about every 18 months, driving rapid progress in computers and telecommunications. Doubling the number of devices that can fit on a computer chip translates into a similar increase in performance.

Because this doubling requires circuits to be made smaller and smaller, it is thought the limits of physics will soon make it impossible to continue at the same pace, or that it eventually will become too expensive to shrink circuits any more, hindering further progress. Some observers have predicted Moore’s Law will hit a brick wall in about a decade.

However, a new simulation tool has shown that an innovative type of transistor could keep Moore’s Law in force until 2025, or beyond. This would give scientists breathing room to develop entirely new technologies to replace integrated circuits made from silicon.

The simulation tool was developed by a research team led by Mark Lundstrom and Supriyo Datta, professors of electrical and computer engineering at Purdue. Also included on the team are DeJan Jovanovic, a computational scientist at Motorola Inc., and Professor Jerry Fossum, an expert on advanced silicon transistors at the University of Florida.

Graduate student Zhibin Ren will discuss the research findings on Wednesday (12/13), during the International Electron Devices Meeting, sponsored by the Institute of Electrical and Electronics Engineers, in San Francisco.

The simulation tool tested the performance of an experimental transistor, called a double-gate transistor, which carries twice the electrical current and could work more than twice as fast as conventional devices. Lundstrom has demonstrated that double-gate transistors one-tenth the length of the best conventional transistors could perform as well as current devices. Critical components in the transistors, electrodes known as gates, are only 10 nanometers long, compared to 100 nanometers for conventional transistors. To put those dimensions into perspective, a human red blood cell is about 7,500 nanometers across, and one nanometer is roughly 10 atoms wide.

Researchers are concerned that, as transistors are shrunk below 100 nanometers, it will be difficult to maintain high performance and fabrication quality.

The major problem is that conventional silicon transistors, the on-off switches that make solid-state electronics possible, will cease to function below a certain thickness. That’s because at such thin dimensions quantum mechanics – in which electrons behave as both waves and particles – begin to have a measurable effect on performance. Essentially, the ultra-thin layer of insulating material in such small transistors will fail to stop electrons from flowing, and the transistor will no longer function as a switch. However, that problem could be solved by double-gate transistors, Lundstrom said.

The new simulation tool evaluates transistor performance with a sophisticated technique earlier used by Datta to simulate electrical conduction in individual molecules. When applied to transistors, the same method predicts that a double-gate transistor can continue to perform well at gate lengths as short as 10 nanometers, and perhaps even shorter, Lundstrom said.

“That means, if we could learn how to manufacture a device like this, we could extend Moore’s Law to the year 2025,” he said. Researchers at Purdue, the University of California at Berkeley and the IBM Watson Research Center have already demonstrated working double-gate transistors.

During the San Francisco conference, Lundstrom will announce that the simulation tool, called nanoMOS, is now available to any researcher who wants to use it. Engineers at Purdue will make the tool available through an unusual system called the Purdue Nanotechnology Simulation Hub, or nanoHub.

There is no need to download the simulation software or learn new operating codes because the nanoHub uses a network-computing platform that automatically enables computer users to run programs with conventional Web browsers. They simply acquire an account and begin using the software.

Purdue researchers say they know of only two other teams in the world who have created similar “full quantum” simulation tools. But those tools were developed in the private sector and are not accessible to the research community at large.

“We want to accelerate progress in nanoelectronics by making this tool available to everyone,” Lundstrom said. The nanoHub can be accessed at http://www.nanohub.purdue.edu .

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire