COMPUTER GRID WOULD REDUCE NEED TO BUY SOFTWARE

January 5, 2001

SCIENCE & ENGINEERING NEWS

West Lafayette, IND. — A system at Purdue University could help create a worldwide “computational grid” in which individual users no longer have to purchase software but are able to run programs remotely over the Internet.

The system is called the Purdue University Network Computing Hubs, or PUNCH, a network computer that provides access to programs from 16 universities, four research centers and six companies.

“We had a million hits the first half of this year, and we don’t advertise,” said Mark Lundstrom, a professor of electrical and computer engineering.

PUNCH is now primarily used by engineers who require highly specialized software for research and teaching. The software is not commercially available and is difficult to use and install. PUNCH not only makes the software accessible to the entire research community, it automatically enables computer users to run the software via their own computers through the World Wide Web.

“The software does not actually run on the users’ computers, it runs on a server somewhere,” said Nirav Kapadia, a senior research scientist responsible for developing the underlying software that makes PUNCH possible. “It enables whatever you are running on your server to interface with a distant computer.”

The system has saved money for engineering students by eliminating the need to buy expensive software for certain courses.

“PUNCH is essentially a system that enables users throughout the country and the world to access our computer-based tools, and more importantly, to actually run them through their own computers,” said Jose Fortes, a professor of electrical and computer engineering who worked with Kapadia to develop the system.

Although PUNCH is now dominated by engineering applications, in principle it could be used for a much broader range of software, including programs used for business and industry. Companies with offices in different states or countries would benefit from using such a hub to share expensive software.

“In the long run, I think a grid should serve all computing needs,” Kapadia said. “For now, the research community provides a nice user base to test the ideas behind the grid. I see PUNCH as a prototype of a grid; its purpose is to allow us to learn what needs to go into building a large-scale infrastructure of this type. Personally, I would love to see PUNCH evolve into a commercial computational grid.”

However, developing a commercial grid would pose challenges. “The software vendors are going to have to sort out how to license and charge for this service because the implication is that people would not have to buy software,” Lundstrom said.

The grid concept has recently been attracting more interest from corporate America. “This has suddenly, within the last year or so, become a very hot field,” Lundstrom said. “Companies called application service providers are beginning to jump into this. The advantage that we have is that we’ve been doing it for five years now. We’ve learned what it takes to make it work.”

An important feature of the system is that it can automatically find resources, anywhere in the nation, that users need to do their work.

“If you are running a high-level simulation and it requires a super computer, it can look around for a super computer that isn’t being used at the time, or one that is being least used, and send the job there,” Lundstrom said. “If you run a smaller job, it can recognize that it can go to a smaller machine somewhere else. It can manage all of this, like the electric power grid. Your electricity comes from someplace where there is excess capacity, and it is routed across the country. In the same way, there are a lot of excess computing cycles that just aren’t used that could be used somewhere else.”

PUNCH contains various “hubs” for different engineering interests, and each hub connects users to the programs they need for their work. For example, Purdue engineers have most recently created a nanotechnology simulation hub, or nanoHub, which provides programs for designing extremely small transistors and other components measured in nanometers, or billionths of a meter.

“We are trying to convert computing into a service infrastructure,” said Kapadia, who began developing the system to help Lundstrom solve a research dilemma.

“I had some high-level simulation tool that I wanted to share with my colleague in another state,” Lundstrom said. “He wanted to hire a post-doctoral fellow to install this and to learn how to run it.”

Within a half-hour Kapadia had the complicated simulation program on the Web. “I called this fellow back in New York and said, ‘You don’t need to acquire the software, just log onto this address and run it,’ and he was doing that in the afternoon,” Lundstrom said. “Within a couple of months we had written a paper together. It probably would have taken him a year to have gotten the software, converted it to his machine, and learned how to run it himself.”

Kapadia and other members of the PUNCH team presented details about the system in November during an international computer conference, SC2000, sponsored by the Computer Society of the Institute of Electrical and Electronics Engineers.

Lundstrom has developed a simulation tool for designing transistors only a few atoms wide, and in December he made the tool available to the research community via the nanoHub. The simulation tool has yielded information demonstrating the benefits of a new type of transistor. Purdue researchers say they know of only two other teams in the world that have created such a simulation tool. But those programs are not accessible to the research community at large.

“We are going to make this available to anyone,” Lundstrom said.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire