CLEAN POWER

January 19, 2001

by Michael Schneider, Pittsburgh Supercomputing Center

With 85 percent of U.S. power consumption coming from fossil-fuel combustion, researchers at the National Energy Technology Laboratory face the challenge of developing technologies for high-efficiency, low-emission combustion. In simulations at the Pittsburgh Supercomputing Center, they’re making progress toward this goal.

* * * * On the voyage home to Ithaca, Odysseus and his sailors had to navigate between Scylla and Charybdis — dangerous rocks and a whirlpool. Maneuver to avoid one peril and you risk the other. Researchers at the National Energy Technology Laboratory in Morgantown, West Virginia know the feeling. Their job is to steer the course of environmental stewardship in the face of accelerating demands for electrical power around the globe.

“America is running short of electricity,” said a front-page story in the Wall Street Journal last Spring (May 11, 2000). The information age — temperature controlled machine rooms and offices — and surging appliance purchases have juiced power consumption. Summertime U.S. peak demand is now about 700,000 megawatts, up from 525,000 in 1989, a rise that threatens to outstrip capacity, now about 780,000 megawatts. Complicating things is that deregulation of the electric utility industry has spawned uncertainty about the return on investment in new plants.

Adding fuel to the fire, literally, developing countries are a burgeoning market for energy. One recent projection holds that over the next few years 300 megawatts of new electric generating capacity will be installed somewhere in the world each day!

What about acid rain? What about greenhouse gases? These and other environmental imperatives drive research to provide clean-power options for the world’s energy. At present, 85 percent of U.S. consumption and 90 percent of the world’s comes from fossil fuel, and as the president’s commission of science and technology advisors reported last year, the current best opportunity for environmental progress in power generation is high-efficiency, low-emission combustion.

“The challenge is to convert fuel to energy without creating pollutants,” says George Richards, who leads NETL’s combustion dynamics team. The workhorses of electrical-power generation are the jet-engine-like gas turbines that convert fossil fuel into megawatts of electricity, and the mission of Richards’ team is to help develop the engineering knowledge to make 21st century turbines more efficient, cleaner and cheaper to operate. In a recent series of simulations at the Pittsburgh Supercomputing Center, they’ve made progress toward this goal.

Lean, Pre-Mixed Combustion

The power industry began to shift its new installations toward low-emission technology about 10 years ago, says Richards, and many new power plants employ low-emission turbines. The key to these advanced systems is “lean, pre-mixed combustion” — mixing the fuel, typically natural gas, with a relatively high proportion of air prior to burning. This substantially reduces nitrogen oxide pollutants (known as NOx) while allowing high-efficiency operation. The high efficiency reduces carbon dioxide, a major greenhouse gas, and lowered NOx alleviates smog and decreases other byproducts that affect air quality.

But a nasty problem bedevils these systems. With a lean-fuel mix, the combustor flame burns on the thin edge of not having enough fuel to keep burning, and a phenomenon analogous to a flickering candle sets up pressure oscillations — like a series of very rapid small explosions rather than a steadily burning flame. These oscillations can resonate with the vibration modes of the combustion unit and, literally, shake it to pieces.

“This instability is a major issue that every turbine developer using pre-mix combustion has to face,” says Richards. “It comes up in every conceivable stage — in development, during engine commissioning, in engine-fielding applications. It comes up in permitting these engines and in keeping them operating. It’s a very tricky problem. I’m happy to say that there’s been a lot of progress, and we can now see fielded engines using these incredibly clean combustors. But we also know that avoiding instability places very tight restrictions on how the engine can operate. Adding desirable features, like fuel flexibility, or a wider operating range, can lead to the same old problem.”

To zero-in on the problem, NETL researchers conducted extensive experiments with their Dynamic Gas Turbine Combustor. This state-of-the-art test facility makes it possible to adjust parameters involved in turbine-combustor design — such as location of the fuel injector relative to the flame — and to observe and measure what happens.

The experiments revealed an unexpected result. Changing the location of a nozzle component called the “swirl vane” affected the pressure oscillations. The swirl vane — so-called because it swirls the air flow to create aerodynamics that mix the fuel and air — sits upstream of the fuel injector. In experiments comparing two swirl-vane locations, with other parameters unchanged, when the swirl vane was moved two inches farther upstream the pressure oscillations virtually disappeared. Why?

What to Measure?

The objective, stresses Richards, is to understand the physics behind the observed data, so it can be incorporated rationally into turbine design. Moving the swirl vane gave better performance in one set of conditions, but the data was inconclusive when it came to explaining the results. Prior research suggested that the time lag between when fuel is injected and when it burns is a key factor for the oscillations, but presumably, since the fuel-injector didn’t move, the swirl-vane would have little or no effect on this.

“You can place the swirl vane either closer to the flame or farther away,” says Richards, “and it makes a difference. But we didn’t know why. We had some conjectures, and we tested those, but we still couldn’t prove what was going on. There’s subtle effects, like decay of turbulence and swirling flow, that impact the important time scales — multiple, simultaneous processes, and you can’t interpret the experimental data without quantifying the contributions from these simultaneous events.”

To sort out the details, Richards and his colleagues turned to simulations on PSC’s CRAY T3E. In recent years, the NETL team worked with consultants for FLUENT, commercial fluid-dynamics software, to develop 3D modeling that realistically simulates experiments in the experimental combustor. In summer 1999, with help from PSC scientists, they adapted FLUENT to the CRAY T3E and ran a series of simulations replicating the experiments.

Each computation — one for each experiment — required about a week of computing on 20 T3E processors to simulate 30 milliseconds of combustion. Each produced 20 gigabytes of compressed data, an enormous amount of information, which itself created a huge post-processing task.

When the results were in, they told an interesting story: The aerodynamics in the nozzle are such that moving the swirl vane, with no change to the fuel injector, significantly affects the time lag between injection and burning. In the two cases of interest, moving the swirl vane two inches upstream slows this lag time by a millisecond, and that millisecond makes a big difference in combustion stability.

“We looked at the simulations,” says Richards, “and said ‘ah-ha.’ It was obvious. The change in this time lag from the point of injection is what we need to measure. That’s a whole different universe to work in from where we were, a definite conclusion. It helped us set up the next set of experiments in which we’ve been trying to make a verifiable measurement of those time scales. And we’ve made some progress on that.”

Flame Volume & Reaction Rate

Along with focusing their analysis of the swirl-vane results, the CRAY T3E simulations also provide the NETL team with a way to look deeper yet at the physics of turbine combustion. A key factor in combustor stability is the flame’s reaction rate, the speed of burning, which varies with time. The NETL group would like to know what drives this variable. Does the volume of the flame change, such as when a candle-flame flickers, or does the flame volume stay constant as the burning-rate varies?

“We don’t know which occurs in practical systems,” says Richards. “We want to use these simulations and identify the dominant mechanism. It’s probably some of each, but is it 90/10, 50/50 or 20/80? We may find that it’s different under different conditions. That’s where the simulations really help. If we show that you go from one mechanism to the other in the same combustor, depending on operating conditions, you’d have to do different things to make the system quiet. With simulations, and going back and forth iteratively with the experiments, we’re learning a lot about fundamental physics.”

More information, including graphics: http://www.psc.edu/science/richards.html

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire