COMPUTER SCIENTIST SOLVES OLD SALESMAN PROBLEM

January 19, 2001

SCIENCE AND ENGINEERING NEWS

It was a combination of things, physical and metaphysical that killed Arthur Miller’s traveling salesman Willie Loman.

Now a computer scientist at Washington University in St. Louis has developed and tested an algorithm that might at least have made Loman’s road traveled a little easier.

Weixiong Zhang, Ph. D., associate professor of computer science at Washington University, has developed an algorithm that attacks an old problem in the computing and business worlds known as the Traveling Salesman Problem (TSP). An algorithm is the backbone of computer operations; it is a step-wise mathematical formula, similar to a recipe, that solves a problem or reaches an otherwise desired end. The Traveling Salesman Problem is actually an umbrella term for a whole host of planning and scheduling problems, often involving routes; a classic one being a postman’s route, for instance.

Zhang currently is working with an AT&T Bell Labs collaborator David S. Johnson, Ph.D., a pioneer and widely acknowledged leading expert in the area of computational complexity. They have applied the algorithm bearing Zhang’s name to ten theoretical Traveling Salesman Problems and found it to be the best solution for half the problems, including one the AT&T Bell Labs is focusing on. The Zhang algorithm can be applied to a host of real-life problems.

One of the problems that AT&T Bell Labs is concerned with is one that involves the routes of payphone coin collectors. Zhang’s algorithm, in the case of payphone coin collectors, maps a route through these different phone booths enabling the service person to avoid backtracking, one-way streets, or visiting the same booth twice, getting him back to the office at a reasonable time. In the business world, this saves a company time and expense.

Zhang and his collaborator tested his algorithm on four different classes of coin collecting routes, with routes of 100, 316, 1,000, and 3,162 different payphones. Compared with six other algorithms tested, the Zhang algorithm found the shortest, most efficient, or cost-effective route in each case. The algorithm is scalable and robust; it can compute for up to half million “nodes,” in this case payphones, and it computed some routes in a matter of seconds.

Beyond the phone booth problem, the Zhang algorithm and the otherswere tested on a category called “No-wait flowshop problems.” Picture an automobile paint shop with multiple stations for painting different portions of a car. The algorithm maps the most efficient route from start-to-finish. Also computed were routes for tiny disk drive readers inside a computer and routes for moving heavy oil-drilling equipment on a large field. In the case of the disk drive reader, a short route must be chosen to minimize the distances that the reader must “travel” to speed up data access operations. In the case of the drilling equipment, a short route means a short “travel” distance for the equipment. The algorithm also can be applied to what is called very large scale integration (VLSI). For such aproblem, a route is needed that will connect all the minuscule components on a computer chip so that they can interface and function together.

Each of the TSPs tested are considered asymmetrical, which takes into account that the distance from place A to place B is not the same as that from B to A. Asymmetrical problems more closely reflect real-world situations. For instance, traveling on a freeway, you might be able to get on and reach adestination without paying a toll, but on the way back you might have to cross a bridge that has a toll. Thus, the cost in one direction is not the same as that going back. The Zhang algorithm factors in these real-life asymmetries. The results of the research were presented Jan. 5, 2001, at the Third Workshop on Algorithm Engineering and Experiments (Alenex 01), held at Washington, D.C. Some of the results also will be included as a chapter in a forthcoming book on the Traveling Salesman Problem. The work is partially funded by the National Science Foundation. “The Traveling Salesman Problem is one of the first computer science problems to be approached in the past century, and it is one of the first problems shown to be in the class called NP-Complete,” saidZhang.

Loosely speaking, NP-Complete is a class of problems that are believed unsolvable within a reasonable amount of time in the worst case. Thus, approximation algorithms are very important for solving real-world problems such as the payphone coin collector problem. Zhang’s algorithm is considered to be one of the two best approximation algorithms for the Asymmetric Traveling Salesman Problem. The other is what is called the Kanellakis-Papdimitrious local search algorithm, named after two noted computer scientists.

Algorithms such as Zhang’s are memory-efficient and meant to be embedded in hardware as a small but essential part of what’s called mechanical electronic manufactured systems (MEMs). Zhang currently is working on algorithms that are meant to run on smart devices, with very small memory and limited power.

“Memory is a very big issue today,” Zhang said. “With MEMs, you bundle the software so it’s very tightly integrated with the hardware and each smart device, with just a few thousand bits of memory and small amounts of data, all connect with each other to build and run a larger application. Running time-and space-efficient algorithms, you build a big system out of these small smart devices.” Zhang also is working on efficient search algorithms for analyzing biological data such as DNA, RNA and protein sequences. He is particularly interested in applying his skills in computer science and artificial intelligence to a relatively new but very active area called computational biology, or bioinformatics.

“If we say that information and computer technology were the leaders in the technology world in the last century, then biology will be the leader of this century,” said Zhang. “The combination of information technology and biology will not only provide us the knowledge of life science, but also help to cure diseases and make our lives wonderful to live.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This