Fermilab’s DZero Experiment Crunches Record Data

By Nicole Hemsoth

May 2, 2005

Hundreds of scientists from the DZero collaboration at the Department of Energy's Fermi National Accelerator Laboratory are using the technology of the future to process particle physics data today. Using Grid computing, facilities in six countries around the globe have begun to provide computing power equivalent to 3,000 one-gigahertz Pentium III processors to crunch more experimental data than ever before. In six months, the computers will churn through 250TB of data — enough to fill a stack of CDs as high as the Eiffel Tower.

“We're using the Grid to process three years' worth of data — 1 billion particle collisions — in six months,” said Fermilab guest scientist Daniel Wicke, on leave from the University of Wuppertal, Germany, who heads the reprocessing effort. “DZero has a long history of using computing resources from outside Fermilab, including a project in 2003 to send a much smaller amount of data off-site for reprocessing. We knew that this much bigger effort, remotely processing ten times more collisions than before using five times the number of computers, would be possible.”

As new data is recorded with the DZero detector at the Tevatron, the world's highest-energy particle accelerator located in Batavia, Ill., it is processed into a form useable by physicists. The cluster of one thousand computer processors dedicated to DZero computing at Fermilab is kept busy processing the newly acquired data.

“The DZero computer farm can process about four million events per day,” said Mike Diesburg, who manages the farm. “At Fermilab, we process data in real time, so even with no new data coming in it would take three years to reprocess three years' worth of data. To do it in six months we need to look for computing resources all over the world.”

A reprocessing of stored data is necessary when physicists and computer scientists have made significant advances. Researchers are constantly trying to optimize the software to process each collision event faster, and physicists' understanding of the complex DZero detector is also steadily improving.

“Our scientists are always thinking up new ideas; better ways to calibrate detectors or track particles,” said DZero spokesperson Jerry Blazey. “We wait until many of those ideas have been incorporated into the software and then do a reprocessing. The reprocessed data will improve the full physics program, including detection of top quarks and other elementary particles, and searches for the Higgs boson and new phenomena like supersymmetry.”

As each collision event is processed, the software pulls additional information from large databases, requiring several complex auxiliary systems to work well together at all times. This system then has to be adapted to run on computer systems in many different environments, with many different configurations. Researchers at Fermilab and the participating institutions have been working for almost a year to ensure that the current reprocessing runs smoothly.

“The reprocessing effort pushes the limits of our software and infrastructure so that we can get the most physics out of the data collected by the DZero detector,” said Dugan O'Neil of Simon Fraser University, a participant in the WestGrid collaboration. “The Grid allows DZero to make better use of remote human resources as well as computing power. Participating in the reprocessing is an important technical contribution for our group, and it also gives us the experience needed to figure out how to efficiently analyze data remotely.”

Canada's WestGrid, the University of Texas at Arlington, CCIN2P3 in Lyon, France and FZU in the Czech Republic are the first collaborating sites remotely reprocessing DZero data. Computing centers and Grid projects at the University of Oklahoma, GridKa in Germany, and GridPP and PPARC in the United Kingdom will soon follow. Fermilab scientists hope to eventually add collaborating sites in Brazil, India, Korea and China.

Institutions that have not traditionally collaborated on the DZero experiment also contribute to the reprocessing. The University of Wisconsin is currently contributing computing power, and Fermilab resources primarily dedicated to the CMS experiment at the Large Hadron Collider (LHC) at CERN will soon begin reprocessing. Ultimately, researchers hope to use resources distributed over several international Grids, including the Open Science Grid and LHC Computing Grid.

The DZero experiment is a collaboration of about 650 scientists from over 80 institutions in the United States and 19 foreign countries. For a list of collaborating institutions, please visit the DZero Web site.

Fermilab is operated by Universities Research Association Inc., a consortium of 90 research universities, for the United States Department of Energy's Office of Science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire