HPC — The Perfect Storm, or a Tempest in a Teapot?

By Commentary from a High-End Agnostic

May 13, 2005

In HPCwire [M367542] one month ago, the notorious High-End Crusader made strong comments on the dire state of supercomputing in the US: no activity to follow-up on the HECRTF report (or the IHEC report, or the NRC report); decreasing funding for research in high-performance computing and (surprise, surprise) decreasing research on high-performance computing; lack of direction at NSF, with the NSF supercomputing centers withering on the vine; lack of interest in long-term investments in supercomputing R&D from almost all the federal agencies; lack of direction, lack of perseverance, small and unstable market for supercomputer manufacturers; all this at a time when continued progress in supercomputing performance becomes harder, because of the many reasons outlined in the NRC report (increasing gap between processor speed and local and global memory latency, slow-down in the speed increase for single threaded computations, and increased use of on-chip parallelism; increasing failure rates, increased hardware and software complexities, etc.). Indeed, life is hard for big-iron bigots. But should these difficulties worry agnostics that care about the applications solved with high-end computers, not about the technology itself?

Three weeks ago in HPCwire [M368170], Daniel Reed, Jack Dongarra and Ken Kennedy made an eloquent argument that agnostics should care, since “opportunities abound for application of high-performance computing in both science and industrial sectors.” Reed, Dongarra and Kennedy are distinguished professors of Computer Science and renowned researchers in high-performance computing. Thus, it is not too surprising to hear them support a better investment strategy for high-performance computing.  Nor is it surprising that the authors of the IHEC report or the authors of the NRC report support such a strategy. It is even not surprising that the manager of numerically intensive computing at Ford testified to the House that government should spend its money on making better supercomputers.

What is perhaps surprising is that few decision makers in the science and industrial sectors seem to care about the dire state of supercomputing. Few physicists or chemist or biologists seem to clamor for better big iron. I am inclined to believe that a petition written by a dozen of Nobel Prize winners in physics, chemistry or medicine would be much more effective than an appeal by Reed, Dongarra and Kennedy. Better, still, the physics research community could ensure a steady supply of high-quality supercomputer platforms in the coming decades by agreeing to cancel one major experiment in high-energy physics and reapply the money!

I suspect that this will not happen. I also suspect that manufacturers everywhere, and perhaps even Ford, will continue to buy clusters and will continue to buy application software from ISVs, even if this software does not scale very well. The reason is very simple: physicists or engineers do not care about using the best possible supercomputing technology; they care about doing more science or more engineering with a given budget. And, by and large, they are happy with the current state of supercomputing.

The current state of supercomputing is not the result of a conspiracy or of harmful decisions made by a handful of incompetent administrators; it is the result of largely rational decisions made by a large number of people. Why are so many people happy with clusters that we, high-performance computing specialists, know are so inadequate?

Most science and engineering groups are happy with the processing power they can get their hands on. Surely, there are problems where progress will be made when computers are 1,000 times more powerful. But how many user groups are willing to increase their compute budget 1,000 times in order to start working on these problems now?  Surely, there are problems that can be solved much faster on custom supercomputers than on commodity clusters. But who prevents the people working on these problems to buy custom supercomputers? Even when anti-dumping duties made Japanese vector supercomputers prohibitive in the U.S., these could be freely purchased outside the U.S. at low price. If the use of vector systems was important to the business of Ford at the time, then I suspect that Ford would have found a way to overcome the 10 miles that separate Dearborn Michigan from Windsor Ontario.  In any case, this excuse is gone: if people buy many more clusters than custom supercomputers, it is because they believe that they get more value for their money.

Most science research groups believe that a cluster in hand is better than a share of a large machine at a supercomputing center. This is no different from the evolution from centralized mainframes to departmental minis two decades ago: research groups believe that they are better served by a smaller machine that they fully control, that they can upgrade in small increments and that they can adapt to their needs. Erudite arguments about total cost of ownership will not change this reality. It is not that these scientists are irrational; it is that their priorities are different from the priorities of the large supercomputer center managers. The large center manager cares about the total cost of the system and about the total throughput of their system: the more “solutions per dollar,” the better the system. The individual researcher cares much more about availability: can I get machine time when I need it, in order to complete my paper by the deadline or in order to beat my competitor? High availability means low throughput, as any user of the phone system can tell. The phone system is efficient, even though telephones are idle most of the time. But large supercomputer centers that are closely watched by bean counters have to show that their processors are never idle.

Many people have been burned by the use of custom systems with unique hardware and software technologies as the companies providing these technological marvels went bankrupt. The examples abound: think Thinking Machines, KSR, HEP, etc. Clusters running MPI may be an abomination, but one can be fairly certain that these systems will be around in any foreseeable future. Risk avoidance is a rational strategy for a company or a research group that invests in codes that will be used for a decade or two.  There are many new ideas for technological marvels these days (think HTMT, or perhaps Cascade). Who is willing to bet that the next technological marvel, even if built, will survive two decades?

But, one might say, aren't clusters so terribly inefficient? Isn't it horrible that codes run at less than 10% efficiency? Isn't it horrible that people spend time coding in MPI, rather than using more productive languages?

I have already touched on the first question: my phone works at less than 1% efficiency, and this is not horrible. One could get higher phone utilization by reducing the number of phones, or forcing people to make more calls, but this is not a good idea. The reason is obvious: phones are cheap, as compared to people. It is a bad tradeoff to increase phone efficiency while reducing people efficiency. Similarly, ALUs are cheap, while memories are expensive and buses are expensive; it is a good idea to reduce the efficiency of ALUs if this increases the efficiency of memory or buses. Several reports on HPC have made much of the fact that the effective performance of supercomputers has grown more slowly than their peak performance.  But the curves that show that, over the last decades, supercomputers achieve decreasing “efficiencies” do not show a failure in supercomputer design. On the contrary, they show a rational choice of supercomputer designers: as ALUs become relatively cheaper, then a rational design will overprovision ALUs and have them used less efficiently so that other parts of the system that are more expensive be used more efficiently.  The time has come for our community to stop speaking of “efficiency” and, indeed, of “peak rate.” This makes as much sense as speaking of the peak rate of the phone system computed by assuming that all telephones are used simultaneously. The real measure of hardware performance is the time it takes to make a computation. This can be approximated by measuring the execution time of representative benchmarks. But, if one wants a simple characterization of performance, then this characterization should focus on the key bottleneck in the system; for scientific computing, this is memory access. Rather than the numbers now published in the TOP 500 list, I would like seeing numbers on the peak memory bandwidth, and the effective bandwidth achieved by the HPCC benchmarks.

And what about programmer efficiency? Wouldn't we be better served by higher-level languages and the machines that better support them? The obvious conundrum is that if high-level parallel languages are such a good idea, they would have happened by now. In fact, the evolution has been in the reverse direction: from vector, shared memory and SIMD machines, which supported easy to use parallel programming languages, to clusters and MPI. How do we explain this evolution?

There are several possible answers. One is that high-performance computing is, by definition, about expensive hardware. It is working in a regime where hardware is relatively more expensive as compared to programmer time and where it makes sense to spend more programming time to improve compute efficiency. This is the same phenomenon that we discussed before, when speaking of ALU utilization. In a high-performance computing environment, it makes sense for “programmer efficiency” to be reduced, so as to enhance “hardware efficiency.” To the same extent, people that develop mass produced embedded systems may spend a lot of programming time to reduce the footprint of the embedded software or achieve performance goals. In fact, a significant emphasis on performance almost by definition implies a significant concern about low level details: sizes of memories and caches, data layout, exact compiler strategies; this works against the idea of abstracting exact hardware details. It is worth remembering that FORTRAN programming replaced assembly programming only when FORTRAN programmers could achieve the same performance or better than assembly programmers.  Work on high-level languages for high-performance computing should not underplay performance; the goal should be to achieve better performance with less programming effort.

Another answer is that that better programming languages will reduce only a small fraction of the effort going into developing large scientific codes. Much of the time is spent in working out requirements, developing and trying new algorithms and new computational methods, validating the code and doing performance tuning and system testing. A large code will be written into a variety of languages: Python, Perl, C++, C, Fortran, Java, SQL and what have you. A small fraction of the code will be in the explicitly parallel kernels.  Better programmers and better code development methodologies and tools will most likely affect productivity much more than the next parallel programming language.

Notwithstanding all the discussions about productivity, and all the money spent by DARPA on the High-Productivity Computing Systems program, there is a real chance that we shall continue seeing regress in this area, rather than progress. If you think that programming a cluster of 500 Intel processors running Linux is hard, wait until you try to program 64,000 IBM Blue Gene nodes with a light-weight kernel, dual processors that are not cache coherent, and SIMD floating point units; or a machine built out of the new IBM Cell processors, with a heterogeneous architecture and on-chip message passing; or a fast nVidia GPU, with its graphic pipelines and its multiple types of processors. Clusters have been being built for two decades from mass-produced nodes that offer the best cost-performance for compute intensive applications: first workstation-derived nodes, next PC-derived nodes. Today, the best cost-performance is achieved by game processors, graphic processors and signal processors — their only limitation being bad support for 64-bit floating point arithmetic. As soon as the needs of realistic animation forces their vendors into 64-bit floating point, one can safely bet that most clusters will use such nodes as components. This next generation of clusters will be harder to program than the current generation.

I may be wrong. It may be that, for whatever reasons, we are now stuck in a “local optimum” where everybody is using crummy machines with crummy software, and where the community of high-performance computing users is less productive than it could be. It may be that an infusion of money and enlightened research and industrial policies could overcome the barriers to change and shift HPC to a “global optimum” where the community becomes more productive through a use of better systems with better languages. But, I doubt this is the case. The mere fact that supercomputing architectures come and go, that parallel programming models and languages come and go, and that new science areas (such as biology) reach the age of supercomputing with a relatively clean sheet of paper and can adopt new models without too much pain, provides a clear indication that the barriers to change are not that high. If there was a different way of organizing the supercomputing enterprise that would clearly benefit the user community, then “market forces” (i.e., the individual decisions of the many involved parties) would be moving us there. If we are not happy with the current state of supercomputing, then it is not sufficient to say that we want better toys. It behooves us to explain what “market failures” causes us to be stuck in the current state: why individual decisions of many decision makers choosing to invest in particular forms of HPC technology do not lead to the right choices. Most importantly, calls for new investments and new policies in HPC have to come from people that can make a credible argument that such investments will lead us to fundamental discoveries and will have a major societal impact, not from people that want to build better mouse traps.


The High-End Agnostic, another noted expert in high-performance computing and communications, shall remain anonymous. He alone bears responsibility for these commentaries. Replies are welcome and may be sent to HPCwire editor Tim Curns at tim@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This