Grids Playing Prominent Role in Life Science Research

By By Salvatore Salamone, Senior IT Editor, Bio-IT World

May 16, 2005

Biotech and pharmaceutical organizations are increasingly looking to apply Grid computing to their research efforts.

Typically, life science software that run on Grids include a wide range of applications, with the most common ones being molecule screening algorithms and DNA sequence analysis routines.

The nature of these applications makes them good candidates for Grid computing. For example, in the case of molecule screening, the typical computational problem involves checking to see if any of the millions to billions of molecules in collection have the right 3-D shape and chemical properties to potentially be used to fight a disease. The common approach here is to give every Grid node the disease target against which each molecule will be tested. Then, the Grid application divides up the collection of molecules and distributes them to the nodes. This type of application is often called a molecular docking application.

With the DNA sequence routines, the nodes hold portions of a genome database and then the genetic sequence to be compared is sent to all the nodes to be checked against the larger database.

Such applications are widely used throughout the biotech and pharmaceutical industry. Still, the actual use of Grid computing varies greatly from organization to organization. However, there are two distinct scenarios for using Grids within the life sciences.

In one common approach, a company sets up an internal Grid that complements its existing high performance computing operations. In the other approach, an organization, such as a university or a group dedicated to fighting a particular disease, asks people to essentially donate spare PC compute cycles to speed up research efforts.

Notable examples in the first category include Grid projects at Novartis and Johnson & Johnson.

For example, about 18 months ago, Novartis' Grid effort started with a 50-node pilot project that quickly grew to a Grid that included about 2,700-plus office PCs. The Grid ran common bioinformatics routines including sequence analysis and molecular docking algorithms. Once the pilot was up and running, the company claimed the Grid's processing power was about 5 teraflops (5 trillion floating point operations per second). If that performance were sustained and benchmarked, it would be on a par roughly with the world's 30th most powerful supercomputers.

Processing power is one thing, results are another. The Grid project didn't have specific goals, but it was thought that the extra processing power might help Novartis identify up to 10 times more potential drug targets per year.

The Grid immediately helped in making a scientific discovery. Running a docking program, the Grid screened the corporate library of compounds and found a previously unknown potential cancer inhibitor called a protein kinase CK2 inhibitor. The results were published in the Journal of Medicinal Chemistry.

In many life science companies, Grid efforts have been departmental in nature. But noting the increased computing resources that a wider-scale effort would deliver and the potential for making faster scientific discoveries, some companies are making Grids a corporate venture.

That is the case with Johnson & Johnson, which earlier this year expanded its research and development Grid efforts from discrete departmental projects into a company-wide initiative. The idea was to deploy a single global Grid that would host many applications and be centrally managed.

The Grid project is being carried out under the purview of the J&J Pharma R&D IM (Information Management) group. A pilot project started earlier this year was expected to grow the Grid from about 450 nodes to 3,000 nodes by the third or fourth quarter of this year.

Philanthropic Grids

Outside of the corporate arena, Grids are also being used by organizations to help conduct basic research into common diseases. Many of these efforts are philanthropic projects run by research organizations.

There are many of these projects, which are similar to SETI@Home where people are asked to download some software and let the organization take advantage of the spare CPU cycles on a home computer. Examples of these types of Grids include the Scripps Research Institute's FightAids@Home project, the Smallpox Research Grid Project and the World Community Grid.

Most of these efforts are molecule screening projects. For instance, the goal of the Smallpox Research Grid Project is to screen about 35 million molecules against a handful of target proteins.

The World Community Grid project takes a slightly different research approach. Its participants are helping examine how proteins fold. The information derived about protein folding is useful when trying to find treatments and cures for disease such as cancer, HIV/AIDS, malaria and SARS.

Most of these philanthropic efforts have a technology partner including companies like IBM, United Devices and others. These partners supply to underlying Grid infrastructure and management tools that allow the organization to coordinate and run its research on a Grid. Often times, there is also a life science software partner that, for example, makes an application Grid-enabled.

The trend in this philanthropic Grid area is simply to get more people to participate.

The bottom line is that Grid computing is increasingly being called on within biotech and pharmaceutical companies, as well as by research organizations, to accelerate research in the life sciences. Most of these efforts have the ultimate goal of finding new drugs to treat and cure diseases.

About Salvatore Salamone

Salvatore Salamone is the senior IT editor at Bio-IT World (www.bio-itworld.com). He will be chairing a three day IT Solutions for Drug Discovery conference track May 17 to May 19 at the Bio-IT World Conference & Expo, to be held in the Hynes Convention Center in Boston. Several of the talks in that conference track will focus on the use of Grid computing in the life sciences. More information about the conference can be found at www.bio-itworldexpo.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire