ASPEED Exec Teaches Lesson in Grid-Enablement

By By Derrick Harris, Editor

May 30, 2005

In this interview, Kurt Ziegler, ASPEED Software's executive vice president of marketing and product management, speaks with GRIDtoday editor Derrick Harris about Ziegler's recent whitepaper, “Designing Distributed Parallel
Programs for Performance,” and about the Grid market in general — especially from ASPEED's position as a provider of application acceleration software.

How long have you been at ASPEED?

KURT ZIEGLER: I have worked with ASPEED since July 2004.

Gt: What is your background in Grid computing?

ZIEGLER: I have worked with distributed computing since the late '70s. I have had a book, “Distributed Computing and the Mainframe,” published by John Wiley & Sons in 1991 and numerous papers on distributed systems implementations published dating back to the late '70s, and I have worked with various Grid approaches and implementations since early 2000.

Gt: From ASPEED's perspective, how does the Grid market look?

ZIEGLER: It is very exciting. The biggest challenge to more rapid acceptance is that the applications need to be “touched” with varying degrees of skill and re-engineering effort.

Gt: What factors are driving business?

ZIEGLER: The business is being driven by the need for more runs, shorter run times, more transactions, faster response times and the need for more voluminous input — doing this all at significantly lower cost points.

Gt: What obstacles need to be overcome?

ZIEGLER: The primary obstacles are: knowledge/comfort level with the applicable technologies/approaches; concern about the skills and time required to adapt existing applications to Grid environments; and concern that adapting to the Grid for complex applications will require major re-engineering and involve rethinking the application flow and potentially changing computational results.

Gt: How do you think the market looks for Grid computing overall?

ZIEGLER: The market continues to grow, bolstered by the business demand for capacity and the underlying economic pressures. More and more successful pilot efforts are completing. I see 2005 as a major turning point driven by the collision of more pervasive acceptance of Linux, cluster and commodity systems computing, as well as the emergence of higher level tools to adapt and manage the distributed applications.

Gt: I see ASPEED is a member of the GGF. What kind of work have you done with them as a result of that membership?

ZIEGLER: Our participation was more as an observer; we offer feedback when asked since the GGF focus on more on the infrastructure components that the application per se.

Gt: Has ASPEED given any though to becoming a member of the EGA? Why or why not?

ZIEGLER: I track the results of the standards, but our focus is more on the application and masking the aspects of distribution. Our emphasis is to provide a sufficiently high application interface that, once included in the application, will leverage the underlying infrastructure. Obviously, the more companies that embrace the standards, the easier it is for us since we must support a plethora of infrastructures today.

If there were a “Distributable Applications” group, I would be very interested in participating. The reason I used the word “distributable” rather “distributed” is that, ideally, the application should be designed to run equally as well in a single CPU, n-way CPU system or distributed across and cluster or Grid. The value adds of such a focus on the API and services would be to ensure that the application receives optimum performance based on the configuration specifics and the run time consumption choices. I like to refer to such an approach as “future-proofing.” The biggest challenge is that the solution should not require application re-write or re-engineering.

Gt: So much of the negative reaction to Grid seems to center around its perceived complexity and the difficulty of Grid-enabling applications. Yet, ASPEED's recent whitepaper discusses how companies can “quickly upgrade” existing apps. How is this possible? Why all the confusion over upgrading, or Grid-enabling, applications?

ZIEGLER: Yes, the challenge is Grid-enabling applications if you don't use the right tools. ASPEED provides a high level application program API, and the tools to prepare the application for distribution and the run time library that enables a programmer to either annotate (sometimes referred to as “instrument”) the source code or wrap a binary. The first piece of the solution is that that program is not functionally re-engineered; it is simply annotated to identify the parallelizable portion(s) of it that are to be run across multiple CPUs or systems. The decision of many copies to run is made when the program is launched. The run time libraries take care of the data movement and range distribution among the allocated copies. This is done dynamically and adaptively to balance the completion times of the executing copies. The ASPEED run time functionality also detects stalls or environmental failures and seamlessly redistributes the work.

In other words, the ASPEED ACCELLERANT run time software has taken care of all the very tedious functionality, data serialization, unserialization, bringing up the required copies, chunking and coordination required without involving the programmer. Because this is all masked from the application, the application retains its original shape.

What I mean here is that the application is neither sliced up into functional components, which are subsequently scheduled, nor are any distribution mechanics added to the application logic. Instead, the entire application is scheduled across multiple workers and the ASPEED ACCELLERANT runtime functionality passes the flows to the appropriate portions of the distributed copies and coordinates the progress of the while they are executing. What this means is that the only special considerations that application programmers must concern themselves with are to identify the loops to be parallelized to the ACCELLERANT pre-processor — this is what I referred to as “annotation.” One would simply apply the API syntax around the code to be parallelized. The pre-processor would identify the effected data and insert the appropriate includes to provide the distributed functionality. The resultant-linked ACCELLERATED code can then easily be launched on a Grid fabric or simply run across multiple systems without Grid infrastructure software.

If that sounded too simple, it is because it is. There is more than a simple API and pre-processor needed to effectively parallelize some loops. This is why there is so much confusion about what can be parallelized and what can't be easily parallelized. For example, a Monte Carlo algorithm lends itself to be split across numerous copies because each iteration is independent. But what happens if the algorithm has a non-linear relationship or geometric relationship? Lets take the geometric algorithm first. The problem with atomizing or transactionalizing it is that as the number of branches expands so does the number of resources and then network chatter leading to terrible performance characteristics. ASPEED offers a breakthrough in dealing with this and other tough algorithms. ACCELLERANT includes algorithm-aware APIs that treat the distribution and flows differently based on the algorithm and the input characteristics. This enables many applications that were labeled undistributable to be parallelized to use the Grid.

Gt: Speaking of the whitepaper, it also discusses the “six myths” of multi- processing programs. Can you speak a little about some of the major myths and why they still exist?

ZIEGLER: The five-second answer is that many of the practitioners are coming into this space without having the benefits of experience or having suffered through the consequences of some of the design decisions. There is really not much new conceptually, but there is very little advice available. This is what prompted me to write the white paper in hopes of helping some folks skip the land mines, or at least know the options as they build or adapt or re-engineer applications to run on a Grid.

The longer winded answer …

The real reason such myths continue is because they are sometimes validated. For example, if you have a very bright and highly skilled programmer, it is quite possible to gather a collection of tools and middleware and compilers and, in a relatively short time, create a distributed application that meets the performance design points. The problem, however, is that the more optimum the solution, the greater the likelihood that very low level interfaces, specific target system and input specific criteria were used for the implementation. The result is that you now have a distributed application that is sensitive to change, is dependent on a very skilled individual to maintain, and typically doesn't include failure or recovery services. The best way to detect myths is with some targeted questions if we do this (the list is not in any specific order):

  • What skill is required to maintain the code? Multithreading is not easy.
  • Is the resultant performance predictable? Can you model and capacity plan for the resultant run time?
  • Is the solution portable across operating systems (e.g., Windows, Linux, UNIX)?
  • Is the solution dependent on specific data inputs? Does it scale? What happens if the user or business changes some input?
  • Is the solution dependent on a specific configuration (i.e. memory, shared memory, etc.)?
  • Is the solution dependent on a specific proximity (e.g., connectivity, can it be distributed geographically)?
  • Can additional functionality be added without major surgery or unique skills?

Gt: What industry sectors (e.g., financial services, pharma, manufacturing, etc.) does ASPEED do the most business with?

ZIEGLER: We started in the financial services sector because that is where one of our founders came up with the idea of adapting applications rather than re- engineering them. Since then, we are doing business in the pharma area, where we have parallelized some non-linear models which were heretofore unparallelizable, at least at the fine-grain level, and in the government sector where we see conditioning the calculation dynamically and then balancing it promises to provide much better scalability than the hard-coded MPI-based models. We are also starting to see engineering applications dealing with sparse matrices, etc.

Gt: Are there any sectors that you see as being ahead of the curve in regard to developing Grid apps, or Grid adoption in general? Are there any sectors that you see lagging behind?

ZIEGLER: This is an excellent question. But it appears to me that the challenge (lagging) is more of a horizontal than vertical. What I mean by that is that certain portions of the business could leverage Grid/cluster technologies while others portions can't see how their applications apply. For example, in the financial services area, modeling, simulation and analysis while being the best candidates, are slow to move because re-engineering the model means significant re-investment in validation of the results. This is why ASPEED's design point was not to require any change to the calculations or the program flow. This concern about validation is even more prevalent in the pharma space, where hundreds of runs are required to validate the results prior to submitting a drug to the FDA. Applications like payroll, which calculate individual payments and deductions, are rather simple to parallelize because the individual calculations are independent and the results are easily matched to parallel runs. I think that the challenge to adoption is that the notion of spreading applications across the enterprise's computers is being looked at as an “all or nothing” proposition by some.

Having said that, I see another consideration that is probably even a bigger factor that often gets overlooked: elapsed time, run time or response time. When applications are parallelized intuitively, the time to run the application is potentially greatly reduced and the workload can be spread to smaller systems, even idle desktops. The problem is what happens when one of the parallel pieces of the application is stuck behind other components. The law of large numbers says that this won't be a problem given enough participating systems. Unfortunately, during pilots, the number of available processors is finite and tends to belong to a population in the same time zone doing the same work. If this is the case, the resultant workload utilization be very appealing but the elapsed times of some time critical jobs may suffer. This leads to dedicated clusters rather than Grid solutions as the first step. ASPEED helps this situation in that once the workers are allocated, the application is managed to optimum completion time eliminating any one stuck process from holding up the timely completion.

Gt: Finally, there has been a lot of talk lately of Grid computing being overhyped, and I'm wondering where you, as a vendor representative, stand on this? If the technology is as world-changing as many vendors would have us believe, why are companies not jumping on board en masse?

ZIEGLER: I think I have answered some of this question in my earlier commentary: I believe that the dramatic change that Grid computing offers in terms of:

  • enabling businesses to do things they couldn't do in terms of enabling applications that couldn't run on a single systems because of prohibitive cost and physical constrains.
  • the potential to more effectively exploit the existing capacity.
  • the ability to use less expensive commodity hardware and open operating systems.
  • the ability to leverage the Grid to achieve predictable response time reductions are real.

The realization is a function of the applications that can effectively exploit the Grid infrastructure. The challenge here is that I think that from both a vendor and IT standpoint, the ideal solution would be bottom-up and, unfortunately, it isn't that easy. By bottom-up, I mean an easy knob or appliance that could be applied as an operating system or configuration additive to magically distribute the workload and be sensitive to the response-time implications and the result consequences. The fact of the matter is that some applications can very easily be distributed with a little effort and sometimes even auto-magically, but the second reality is that there are many more business critical applications with extensive programming and testing investments which require changes to the application itself. ASPEED has embraced this challenge and has developed a methodology, best practices and software that bring the ideals closer together by providing a way to adapt the tougher to distribute applications. Our initial focus has been on the computationally intensive applications and this focus in now extending to work with data management vendors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour


Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This