Grid: The Future of Enterprise Information Processing

By By Michael J. Andrescavage, Andrescavage Software

June 20, 2005

The Problem of Complexity

The creation, maintenance and operation of enterprise information processing systems are too complex. These complexities, these problems, have been increasing with no end in sight. Complexity stifles innovation. As more and more efforts are drawn into sustaining this convoluted technology platform, less energy is directed at break-through or value-added improvements. Complexity, in and of itself, has the undesirable effect of increasing new and recurring costs. The recent trend of off-shoring information processing systems is a direct result of information technology complexity and, put cynically, with the goal of only minimizing the costs of the mess we are in, rather than fundamentally fixing it. Go to www.google.com and enter a search for “computer glitch” (a common term used to disguise the underlying complexities). Hundreds of thousands of incidents are reported across all industries and business sectors — with the majority going unreported.

On the horizon is a new technology, a new promise and a great idea called “Grid computing,” which intended to dramatically improve technology productivity. But unless it is approached in a fundamentally new way, we can expect only more of the same — complexity for the sake of complexity — and, once again, the technology industry will fall short in delivering the expected return on investment.

Implementing the Least Common Denominator

The information technology industry has been prolific in delivering new products and services. But the gap between what should be possible with technology and what the IT community actually delivers continues to widen at an alarming rate — to the dismay of everyone involved (be it the frustrated CEO, the under siege CIO, the overwhelmed manager or the uninspired technologist).

In the beginning, implementation and integration of enterprise information processing systems were fairly simple as new technology goes. However, as more and more manual processes were converted to automation, simplicity gave way to complexity, new solutions to redundancy, and new products to moribund processes. Layers of management and technicians grew around these systems in order to keep them viable. Even today, with each new system, enhancement and initiative, we continue to add to the quagmire. Although, these conditions prevail throughout the industry and end-user organizations, much of the complexity is masked by increased speed of the hardware and glitzy displays.

At the root of all this complexity lies a tremendous amount of software created by millions of programmers. Software is the “directed thinking process” of all these programmers, transferred into computer-executable code/logic.

It has been proposed that, at the most, 5-10 percent of professional programmers are extremely capable, while the rest (90-95 percent) need continuous directions from these superiors. What this means is that the “directed thinking process” of the least capable of programmers has been embedded into most of the software that exists today.

A Brand New Approach is Needed

The complexity of creating, maintaining and operating enterprise information processing systems will not be reduced as long as the aforementioned programmer quality ratio exists.

The conventional approach to solving this problem has been aimed at the 90-95 percentile: new computer languages, integrated development environments, tools for design, monitoring, debugging, profiling and modeling. It is assumed that the information technology industry and end-user organizations need to sustain all these programmers. What if we approached it differently?

A better approach would be to eliminate the 90-95 percentiles and concentrate on facilitating great work from the 5-10  percent of programmers who actually add value.

Leveraging the convergence of hardware capabilities and system interoperability, there is a very different (and better) path forward. Implementing a software architecture that is real-time, scalable, fault-tolerant, operating system/hardware independent, capable of interfacing with all other similar architected software, self-monitoring, upgradeable in real-time and, above all, simple to create is doable.

Here's How

Every information technology organization, whether it's a large corporation, a department within a corporation, a small business, home network, etc., has the physical Grid — the networking and information-processing hardware resources.

Let's start with a few definitions.

Grid:

A collection of networked information-processing hardware. “Networked” implies being able to communicate, by any means possible (wireless, Ethernet, token-ring, intranet, extranet, internet, etc.) to any/all other information-processing hardware in the collection. Information-processing hardware can be mainframe, server, desktop, single-board, embedded, etc. A collection can contain all of your computing resources, or just computing resources on the first floor, or human resources, or enterprise application, etc. Grid management software will exist on every information-processing hardware.

Grid computing:

The ability to process information, by utilizing a Grid, with the Grid-aware software that resides on it.

Grid-aware software:

Grid management and enterprise software — optimally designed — to take advantage of the total Grid resources available (memory, CPU, I/O). “Optimally designed” includes a Grid programming model that minimizes the number of application program interfaces and eliminates communications programming within Enterprise software. The central, cohesive element of this programming model is simplicity. All work accomplished is by commands flowing through a Grid.

Command processing:

  • Keep it simple. The only way to reduce complexity is to reduce the number of decisions that have to be made. This entails a fair amount of dictatorship when designing an enterprise information processing system and the programming model that supports it.
  • All software can be designed as “commands” executed by command processors. Where the resulting software executes and may create new commands executed by other command processors. The execution of a command provides feedback to the originator command. Programmers focus on creating the closed logic for a specific command.
  • A “command” is a list of name/value pairs, which include all necessary variable information required to accomplish a specific, clearly defined task. In addition, command feedback is a list of name/value pairs. Example: a name could be “xml” and the value of this name can be an entire “xml” package.
  • Command processors are externally assigned to operating system threads at runtime. One command processor to one thread. As many command processor — thread pairs, as necessary, may be assigned. One or more commands may be assigned to a command processor. Operating system constraints such as memory and/or number of resources will determine maximum configuration. In operating systems without a threading model, the control entity that is a dispatchable piece of work will be used.
  • The minimum number of application programming interfaces are defined; grouped by initialization and command execution.

Initialization:

  • Program/process initialization.
  • Command initialization — identify every command created and executed.
  • Enter command processing.

Command execution:

  • Search/create/submit command.
  • Insert name/value into command/feedback.
  • Wait for feedback.
  • Set/check exit.
  • Log message.

A typical scenario; a command is allocated to a command processor for execution and becomes conscious:

  • Search the command for required variable information.
  • Process.
  • Create feedback.
  • Done.

Another scenario:

  • Search the command for required variable information.
  • Process.
  • Create/submit one or more new commands.
  • Wait for feedback.
  • Search the feedback for required information.
  • Process.
  • Create feedback.
  • Done.

Now, let's configure a Grid:

  • Identify the collection of information-processing hardware for the Grid.
  • Install Grid management software on each information-processing hardware.
  • Using Grid management commands, configure the Grid into a hierarchical and fault-tolerant structure.

Your small office can have a Grid. Human resources, R&D department, first floor, home network, enterprise applications, etc., can configure a Grid. Individual information-processing hardware can be connected and disconnected to/from a Grid, dynamically, in real time. Grids can be connected and disconnected to/from each other, dynamically, in real time.

The design intent is to build powerful enterprise information processing systems. Yet, even if you have no enterprise systems running within a Grid, the built-in management capabilities are still available. Innovative use of these capabilities will provide uncomplicated solutions for many distributed computing environments:

  • configuration — connect/disconnect/broadcast.
  • file transfers.
  • operating system commands.
  • schedule Grid management commands.
  • process scripts of commands.

Now, let's create a Grid-aware enterprise information processing system:

  • Transform the requirements of an enterprise information processing system into a set of commands. (i.e.: getCustomerRecord, validateXML, formatOutput).
  • Distribute commands and requirements to programmers for development.
  • For production, distribute Grid-aware enterprise information processing system (collection of command processors) and start-up scripts onto the target Grid.
  • Start up the enterprise information processing system. Individual command processors can be dynamically loaded/unloaded for scalability, load balancing and performance.
  • Multiple enterprise information processing systems may co-process on a Grid. Systems may send commands to each other.
  • Flowing commands may be intercepted, replicated and re-routed.

Summary

Why is Grid computing the future of enterprise information processing?

Grid computing is designed for change. Grid computing goes far beyond sheer computing power. Here are important business and technology benefits:

  • Solve problems that were previously unsolvable.
  • Improve optimal utilization of computing resources.
  • Provide capacity for high-demand applications.
  • Improve software development productivity with command processing.
  • Mergers and acquisitions of Grid-aware enterprise systems are desirable.

Grid's can be viewed and managed as dynamic collections of information-processing hardware that expands and contracts to serve the business needs of the enterprise. Cost-effective, commercial, off the shelf, processors can be inserted into a collection when necessary.

Grid-aware enterprise information processing systems are rapidly prototyped, developed, deployed and maintained:

  • All software is command driven.
  • All software is real time.
  • All software is dynamically scalable in real time.
  • All software is fault-tolerant.
  • All software is operating system and hardware independent (except in specific cases).
  • All software is capable of interfacing with all other similarly designed software.
  • All software is self-monitoring.
  • All software is capable of being upgraded in real time.
  • All software is simple to create.

About Michael J. Andrescavage

Andrescavage is an entrepreneur who is passionate about creating software. He brings to this enterprise over 35 years of architecture, analysis and development of Information Processing Systems. His expertise centers around large-scale distributed software architecture. He was chief software architect for USAF's Space Based Experimental Version (StarWars) in 1988. This was one of the first successful Grid computing implementations — long before the term acquired it's recent popularity. Previously, Andrescavage held software architect, analyst and development positions at Charles Schwab & Co. Inc., Computer Science Corp., FMC Corp., General Electric Aerospace (CIA, NSA, DEA, NASA, USA, USAF, NATO, ROK), General Accident Insurance, CIGNA Insurance and United States Air Force. Among the companies he has consulted with: Vanguard Investments, EDS, Exide and RCA. Andrescavage Software Inc. can be found online at www.gridNOW.com or www.andrescavage.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This