The Grid-Based Proof-of-Concept Project

By By Rich Wellner, Contributing Author

July 18, 2005

My previous couple of articles, “Getting a Direction in the Sea of Grid” and “Preparing for the Grid,” dealt with the process of beginning to address the advantages of Grid computing in an enterprise setting. With some of those first steps out of the way, the next step is to determine the efficacy of a Grid solution in a way that doesn't expose the business to an overly large risk. As with other flavors of IT, one good way to do this in the Grid space is with a proof-of-concept (POC) project.

There are many different descriptions using the word “Grid” out in the marketplace of ideas. As Pawel Plaszczak and I pointed out in our book Grid Computing: The Savvy Manager's Guide, while it is useful to consider a data Grid, compute Grid, instrument Grid, partner Grid, enterprise Grid or any of the other flavors talked about in various venues, it is also worth keeping in mind that these are really subsets of the larger thing known as “the Grid.” A financial firm creating an Internet-based Grid application that uses many compute resources is often referred to as a compute Grid. While this is certainly true in the common vernacular, it is also true that many of these applications run on a public network, use open protocols and demonstrate non-trivial levels of service. Thus, it is also accurate to say that it is an application on the Grid at large. In effect, the financial firm is a business creating a virtual organization and using resources on the Grid. The distinction can be important when discussing proof-of-concept (POC) projects because, while the concepts of data Grid or compute Grid may be handicaps in building an enterprise Grid solution, they are of great benefit when scoping a POC project. An enterprise architect might be missing the boat by thinking about compute Grids and failing to take advantage of the ability of the broad array of solutions available in the larger Grid space. That same architect can, however, use the smaller scale of a compute Grid point solution to demonstrate some key capability and prove out an idea before investing large amounts of time and money into a full Grid solution.

Currently, most POC efforts are taking place surrounding the areas of compute Grids and data Grids. These two areas are prime targets for a number of reasons:

  • Most intuitive.
  • Most existing literature.
  • Many products to chose from.
  • Easy to demonstrate smaller scale solutions.


Compute Grid POCs

There are many organizations that would benefit from the application of Grid technology. Among the most long-standing, with examples dating back to the beginning of the industry, are those that make use of an enormous amount of compute power. Within this group, there are two broad classes of applications: those that are embarrassingly parallel (e.g., those applications that execute the same instructions over many pieces of data); and those that run on a cluster and require a lot of communication between various pieces of the application (e.g., Message Passing Interface (MPI) applications). For each of these, the fashion in which one constructs a POC is a little bit different.

Embarrassingly Parallel Applications

In an embarrassingly parallel application, the primary goals for the POC are to demonstrate the discovery of available resources and the mechanisms used to distribute jobs to the various resources. The bulk of the POCs being done at this time answer the discovery part of the equation by either scavenging CPU time from various desktops around a lab or using an existing farm or cluster to demonstrate CPU provisioning in a dedicated shared facility. The various advantages and disadvantage of scavenged CPU versus dedicated shared CPU is beyond the scope of this article, but it is worth noting that many of the world's top IT organizations are choosing to go the path of dedicated shared CPU for manageability reasons. As the global IT marketplace is currently going through another round of desktop consolidation, it isn't clear what the ongoing support for scavenged CPU will be.

The embarrassingly parallel POC will, once the resources have been cataloged in the system, dispatch jobs to the available resources and gather the results. Compared to serializing these kinds of jobs on a typical computer, or even supercomputer, the improvement in turn-around time for this class of application can be quite startling.  We've seen applications that took 15 hours to run be completed in 15 minutes by distributing the work among many nodes.

Even in the POC, the advantages of a compute Grid for embarrassingly parallel applications are easily demonstrable. If a single node takes 15 hours, two nodes 7.5 hours and eight nodes a bit under two hours, then the concept of using Grid technology has been quite well proven for that application. There is no need to deploy a 64-node farm to demonstrate the concept.

Cluster Applications

Many people confuse clusters with Grid computing, so it is worth repeating here that a cluster is not a Grid. A cluster is a resource on a Grid. As such, there are some interesting demonstrations that can be done making clusters available via a Grid infrastructure like Globus.

As with embarrassingly parallel applications, the goal of the POC is to demonstrate discovery of resources and execution of jobs on those resources. Broadly speaking, this is what all execution management is about. In the case of the cluster application, the resource is simply a cluster instead of an individual node. In a POC of such applications, it isn't necessary to have many nodes in each cluster. In fact, a single physical cluster will often times be logically partitioned into multiple smaller clusters. This allows the 128-node system to be viewed logically as four 32-node clusters. With various tools, these individual clusters can be made to appear available for jobs or not, with the dispatch of jobs demonstrated to the stakeholders in the project.

Data Grid POCs

The compute Grid POC process is pretty interesting because there are a couple different ways to go about proving value for the enterprise. Similarly, with data Grid POCs, there are the reasonably distinct goals of “fire and forget” and “high speed transfer.”

Fire and Forget

One interesting piece of the Globus Toolkit is a service known as Reliable File Transfer (RFT). RFT is designed to allow a user or application to request that a set of files be moved, and then leave RFT to do the actual provisioning of that data movement. Interested parties can then check back to see the status of the requests. This is a great facility in situations where links are slow and there are many files to move. It is also a pretty good demonstration in the lab.

What a POC on this front can do is tell RFT about two days worth of data to move and then walk away. When the demonstration completes many thousands of transfers over the course of a few days, people can intuit the power of the service. Similarly, pulling the plug between a pair of machines and then, the next day when the cable is reconnected, have the transfers resume as if nothing had happened is also a cool way to show the robustness of the platform.

High Speed Transfer

GridFTP is a protocol for doing high efficiency data movement across fast WAN connections. A POC on this front can consist of demonstrating other transport protocols and GridFTP across the same link. GridFTP, because of it's support for handling real world packets drops in an efficient manner, will outperform most older mechanisms by a wide margin in many of these tests. Another way to demonstrate this without blasting data down a production WAN is to build a WAN simulator in a lab. These kinds of tools also have the advantage of presenting a controlled failure in the network layer. It is really compelling to do a demonstration of a long WAN transfer and be able to show that even if the number of packet errors is increased substantially, there is only a modest decrease in GridFTP througput. Again, these results can be compared to something like naïve FTP or other transfer protocols.

While there can be a lot demonstrated in print, there is something very useful about going through the steps necessary to build a POC like those above. Understanding what it takes to install the software, configure the systems, manage the demonstration and administer the various services to the point of being able to successfully demonstrate this kind of functionality is a powerful tool for proving that Grid technology is capable of meeting the challenges at hand.

About Rich Wellner

Rich Wellner is the enterprise architect for Univa Corp., specializing in Globus solutions for large-scale challenges.  He is the author, with Pawel Plaszczak, of the upcoming book Grid Computing: The Savvy Manager's Guide. He can be reached at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even in the U.S. (which has a reasonably fast average broadband Read more…

By Oliver Peckham

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

It is with great sadness that we announce the death of Rich Brueckner. His passing is an unexpected and enormous blow to both his family and our HPC family. Rich was born in Milwaukee, Wisconsin on April 12, 1962. His Read more…

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This