The Sweet Sound of Grid Computing

By By Brooklin Gore, Contributing Author

August 15, 2005

Many of you likely remember being challenged on your first day of philosophy class with the question: “If a tree falls in a forest but no one is around to hear it, does it make a sound?” Today's philosopher might better engage students by asking: “If a PC is sitting on a desk, but no one is around to use it, does it make a sound?” The answer is a resounding “yes” — if that PC is on the Grid.

Grid computing allows for the coordination and sharing of distributed hardware resources — like enterprise desktop PCs — which opens up new solutions for complex computing problems. This article discusses how small, incremental investments in desktop PC performance will yield dramatic benefits in an enterprise Grid computing environment. You will also get an answer to your burning question: “What the heck does the sound of a PC have to do with Grid computing?”

An increasing number of enterprises are experimenting with Grid computing; production applications are being deployed every day. However, many of these “Grid” deployments simply couple a distributed resource manager (like Condor) with a cluster of dedicated machines. The real Holy Grail of Grid computing involves tapping the vast legion of desktop PCs, oftentimes referred to as “shared” machines because the compute cycles available to a Grid application must be shared with the primary owner of that machine. This type of Grid design is often called opportunistic computing.

And what an opportunity it is. Consider that a collection of 10,000 PCs acquired over the last four years (not all brand spanking new, high-end systems, mind you) can have an aggregate Floating Point Operations Per Second (FLOPS) rating on the order of 5 teraflops. Compare that to the world's fastest supercomputer (IBM's BlueGene/L as of June 2005) at 136 teraflops. Said another way, a 5 teraflop computer would rank 57th in the Top 500 List of Supercomputers. Not a bad showing for just “gluing together” the computing power of the thousands of PCs found in many enterprises. And gluing together individual computers to form a unified computing resource is just what Grid software does. Granted, you can not solve exactly the same types of problems that high-end, purpose-built machines can, but a Grid's aggregate kiloflop rating is indicative of the computing work that can be accomplished.

Now simply gluing a bunch of PCs together into a “supercomputer” with Grid software is kind of like having a bow without an arrow. A Grid without applications is as useless as a bow without arrows! While computer applications can, and obviously have for years, run without the benefit of a Grid, the Grid lends speed and power to computer applications as a bow adds speed and power to arrows.

When you envision (or better yet, deploy) a Grid harnessing thousands of desktop PCs in your enterprise, interesting ideas will surface. You will find applications whose job queues can be broken into hundreds or thousands of parts that can be worked on simultaneously. You will consider many possible solutions to problems that become feasible with a thousand workers. You will deploy two, three, four of these applications which now consume two, three, four thousand desktop PCs. And then you will have the revelation that occurs to every bow hunter in bear country: If a long bow is good, a compound bow is better — much better. And there is no learning curve. You are immediately more capable.

Consider the long bow vs. compound bow analogy in terms of enterprise desktop PC performance. Many enterprises use a tiered PC procurement strategy based on the following reasoning: Most workers can get by with a pretty basic machine (a single processor and a little memory), some folks require more power (a faster processor and more memory), and a small number of workers — like engineers, designers and planners — might need beefy machines with two processors and lots of memory. If you are a Grid application developer and have a choice of running your application on these three types of machines, which would you prefer? The highest-performance ones, right? Unfortunately, because of today's typical PC procurement strategy, those machines are the most scarce. However, depending on the Grid application, PC performance may no longer be a matter of preference, but one of necessity. In fact, in 2005 alone, this author deployed three Grid applications that required fast machines with lots of memory.

Recent discussions with another large enterprise revealed that limited desktop PC performance was actually delaying a shift from cluster Grid computing to opportunistic Grid computing for “short data, long compute” applications. If you are considering deploying an opportunistic enterprise Grid, you may wish to update your PC procurement process. Consider two primary changes: 1) consolidate from three performance classes to two by eliminating the low-end tier, and 2) upgrade each PC to a minimum memory content of 1GB per processor — an amount that experience shows is sufficient for hosting Grid applications with minimal impact on the machine owner.

Aligning your PC procurement strategy to optimize Grid performance provides several benefits. Every machine that is replaced with a higher-performance machine increases the overall capability of the enterprise Grid. The expense of upgrading the enterprise Grid is incremental and avoids a more expensive mass upgrade. The incremental cost of purchasing more capable machines will be offset by enhanced productivity of the primary machine owner. As you deploy computationally intensive Grid applications on an enterprise Grid of performance-enhanced desktop PCs, you will reap unprecedented benefits from your IT investment. This author's experience attests to that fact. You will also begin running those desktop PCs at aggregate CPU and memory utilization rates never before reached.

And now for the answer to your burning question: Today's PCs have CPU temperature sensors and variable speed cooling fans. The more a CPU is used, the hotter it becomes. The hotter the CPU becomes, the faster the fan runs. Some users have never heard their PC's fan run until their machines started running Grid applications! So, yes, a PC does make a sound when no one is around — if it's on the Grid.

About Brooklin Gore

Brooklin Gore is a senior fellow with Micron Technology Inc., a manufacturer of semiconductor products including DRAM, flash and image sensors. Gore has been researching and implementing enterprise Grid technologies for the past four years to create Micron's global Grid infrastructure, which runs over 20 production applications today. In Gore's 17 years with Micron, he has served as product engineer, computer-aided design group manager, network manager and general manager of Micron's Internet Services Division. Gore has been issued several U.S. patents and is a senior member of the IEEE. He holds Bachelor of Science degrees in computer science and electrical engineering from the University of Idaho and a Masters of Science in computer science from the National Technological University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This