Healing Light

By By Michael Schneider

September 1, 2005

Modeling of photonic crystals at NSF supercomputing centers, now partners in the TeraGrid, over several years has led the way to a major advance in laser surgery, exemplifying how computational simulations no longer take a back seat in driving scientific discovery.

In November 2004, a woman in North Carolina with potentially suffocating growths in her larynx and trachea had them removed by a high-power laser — and went home the same day. This condition had never before been treated without anesthesia and operating-room surgery. Six years earlier, physicists at MIT used supercomputers to learn something no one knew about mirrors.

These two seemingly separate events indeed are linked. A new laser technology, developed from a startling insight into the physics of light, may have saved the woman's life and, at the least, promises huge savings in the treatment of her disease — recurrent respiratory papillomatosis — one that affects tens of thousands of people in the United States alone.

It's a success, furthermore, that exemplifies how supercomputing is no longer merely a supporting character, but with increasing frequency plays a lead role in scientific discovery. In 1998, John Joannopoulos and his team of researchers at MIT discovered what has come to be called a “perfect mirror.” Their “eureka!” moment came not in the laboratory or with pencil and paper working out of mathematical theory; it happened because a computational model produced results no one expected.

For the past decade, Joannopoulos and his team have pushed forward new understanding of “photonic crystals” — fascinating materials, crafted from layers of silicon, which have unprecedented ability to trap, guide and control light. While he works closely with a laboratory team, headed by MIT professor Yoel Fink, to fabricate these challenging materials, a key to this work driving forward has been computational simulations that predict — successfully and precisely — how photonic crystals will work in advance of actually making them. “Computation,” said Joannopoulos, “has played a dominant role in the study of photonic crystals.”

The Perfect Mirror

It may be the most significant advance in mirror technology, said the New York Times, since Narcissus fell in love with his own image in a pool of water. The perfect mirror is so called because it reflects light at any angle with virtually no loss of energy. As a result, it makes possible a number of applications in optical technology, the most significant to date being flexible optical fiber that can transmit the high-powered CO2 lasers used in endoscopic surgery.

Until Joannopoulos' team's 1998 finding, reported with a paper in Science, mirrors were understood to come in two basic flavors, both with inherent limitations. Everyone who looks in the bathroom mirror for signs of life in the morning knows about metallic mirrors. They work all too well for seeing your own face, but they don't work to make optical fiber because a large portion of the light leaks away, absorbed by the metal, rather than reflected.

For optical fiber and other applications where energy loss matters, the choice has been mirrors made from dielectrics — materials that don't conduct electricity well. Dielectrics generally don't reflect light well either, but scientists have found ways to alternate thin dielectric layers of different reflective properties to achieve reflection without energy loss. The drawback has been that these dielectric mirrors reflect light only from certain angles, and their application depends on being able to use light at a limited range of angles and frequencies.

This limitation was thought to be a law of nature, like gravity – no way to get around it — until 1998, when Joannopoulos and company noticed anomalous results from a computational model of a photonic crystal mirror they were running at the San Diego Supercomputer Center. The light seemed to reflect at a much larger angle than was thought possible. “We saw some interesting results in the computation,” he said. “Then came the theory to explain the computation, and then came a real experiment making something like this and testing it.”

The result: a multi-layered dielectric mirror that reflects light from all angles without energy loss. Within a few years, the perfect mirror proved to be the solution for delivering a high-powered laser via flexible optical fiber.

Open Wide for a High-Power Laser

Fiber optics to transmit visible light, based on conventional dielectric mirror technology, has been around for years. These silica-based fibers have a light-carrying core with an index-of-refraction higher than the surrounding material. This layered approach traps light within the inner core — called “total internal reflection.” It works well for visible light, but high-power lasers — such as CO2 lasers used in endoscopic surgery — will melt conventional optical fiber.

Joannopoulos and Fink realized that the perfect mirror offered a potential solution for high-power transmission. With further computations and pioneering laboratory work, the team developed a hollow-core fiber — essentially a dielectric perfect mirror rolled up into a tube — designed in such a way, based on photonics, to transmit high-power lasers.

To take this idea beyond the laboratory into useful applications, in 2000, Joannopoulos and Fink helped form OmniGuide Communications, a company dedicated to developing and marketing the new hollow-core fiber. Further computations over the next few years — in San Diego, Illinois and Pittsburgh — explored other fundamental issues and phenomena of this new class of cylindrical photonic-crystal fiber.

In endoscopic surgery, the lack of a fiber for high-power transmission has meant that the laser had to be delivered to a patient via an apparatus with an articulated arm and large handpiece — which has precluded using these precise lasers for many minimally invasive procedures. For this reason, the surgery to treat RRP required dislocating the patient's jaw and general anesthesia, so that the laser could be brought close enough to the affected area.

A test case for OmniGuide's hollow-core fiber presented itself last year. In serious cases of RRP, the surgery often must be repeated to keep the breathing passage open. Dr. Jamie Koufman, director of the Center for Voice and Swallowing Disorders of Wake Forest University Baptist Medical Center, had a woman RRP patient who had undergone several previous RRP surgeries, but once again had developed near-total obstruction of the larynx and trachea.

Koufman obtained FDA approval to use the prototype fiber. She used a numbing topical spray in the throat and trachea, requiring no anesthesia, and with a CO2 laser delivered via an OmniGuide fiber cleared the RRP growths. The patient, who went home that day, is doing fine.

“Unsedated, laryngeal laser surgery with the OmniGuide fiber is a dream come true for me as an endoscopic surgeon,” said Koufman. “The patient loved it because it was easy for her.” Typical cost of RRP operating-room surgery with general anesthesia is $25,000. With expected FDA approval, the new procedure promises large cost savings nationally.

“These novel optical fibers, based on photonic crystals offer a new approach for medical lasers, making it possible to guide a CO2 laser beam, which can cut tissue with high precision, into a patient's body through a very small incision,” said Joannopoulos. “It will likely prove itself useful for many procedures.”

Computational science has come a long way over the past 20 years,” he added. “Even well known equations can have remarkable unexpected consequences that we would never learn about without these powerful computational engines, such as LeMieux (PSC's terascale system). This is just one advance that highlights how these machines are invaluable tools of discovery.”

Michael Schneider is a senior science writer at the Pittsburgh Supercomputing Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This