Healing Light

By By Michael Schneider

September 1, 2005

Modeling of photonic crystals at NSF supercomputing centers, now partners in the TeraGrid, over several years has led the way to a major advance in laser surgery, exemplifying how computational simulations no longer take a back seat in driving scientific discovery.

In November 2004, a woman in North Carolina with potentially suffocating growths in her larynx and trachea had them removed by a high-power laser — and went home the same day. This condition had never before been treated without anesthesia and operating-room surgery. Six years earlier, physicists at MIT used supercomputers to learn something no one knew about mirrors.

These two seemingly separate events indeed are linked. A new laser technology, developed from a startling insight into the physics of light, may have saved the woman's life and, at the least, promises huge savings in the treatment of her disease — recurrent respiratory papillomatosis — one that affects tens of thousands of people in the United States alone.

It's a success, furthermore, that exemplifies how supercomputing is no longer merely a supporting character, but with increasing frequency plays a lead role in scientific discovery. In 1998, John Joannopoulos and his team of researchers at MIT discovered what has come to be called a “perfect mirror.” Their “eureka!” moment came not in the laboratory or with pencil and paper working out of mathematical theory; it happened because a computational model produced results no one expected.

For the past decade, Joannopoulos and his team have pushed forward new understanding of “photonic crystals” — fascinating materials, crafted from layers of silicon, which have unprecedented ability to trap, guide and control light. While he works closely with a laboratory team, headed by MIT professor Yoel Fink, to fabricate these challenging materials, a key to this work driving forward has been computational simulations that predict — successfully and precisely — how photonic crystals will work in advance of actually making them. “Computation,” said Joannopoulos, “has played a dominant role in the study of photonic crystals.”

The Perfect Mirror

It may be the most significant advance in mirror technology, said the New York Times, since Narcissus fell in love with his own image in a pool of water. The perfect mirror is so called because it reflects light at any angle with virtually no loss of energy. As a result, it makes possible a number of applications in optical technology, the most significant to date being flexible optical fiber that can transmit the high-powered CO2 lasers used in endoscopic surgery.

Until Joannopoulos' team's 1998 finding, reported with a paper in Science, mirrors were understood to come in two basic flavors, both with inherent limitations. Everyone who looks in the bathroom mirror for signs of life in the morning knows about metallic mirrors. They work all too well for seeing your own face, but they don't work to make optical fiber because a large portion of the light leaks away, absorbed by the metal, rather than reflected.

For optical fiber and other applications where energy loss matters, the choice has been mirrors made from dielectrics — materials that don't conduct electricity well. Dielectrics generally don't reflect light well either, but scientists have found ways to alternate thin dielectric layers of different reflective properties to achieve reflection without energy loss. The drawback has been that these dielectric mirrors reflect light only from certain angles, and their application depends on being able to use light at a limited range of angles and frequencies.

This limitation was thought to be a law of nature, like gravity – no way to get around it — until 1998, when Joannopoulos and company noticed anomalous results from a computational model of a photonic crystal mirror they were running at the San Diego Supercomputer Center. The light seemed to reflect at a much larger angle than was thought possible. “We saw some interesting results in the computation,” he said. “Then came the theory to explain the computation, and then came a real experiment making something like this and testing it.”

The result: a multi-layered dielectric mirror that reflects light from all angles without energy loss. Within a few years, the perfect mirror proved to be the solution for delivering a high-powered laser via flexible optical fiber.

Open Wide for a High-Power Laser

Fiber optics to transmit visible light, based on conventional dielectric mirror technology, has been around for years. These silica-based fibers have a light-carrying core with an index-of-refraction higher than the surrounding material. This layered approach traps light within the inner core — called “total internal reflection.” It works well for visible light, but high-power lasers — such as CO2 lasers used in endoscopic surgery — will melt conventional optical fiber.

Joannopoulos and Fink realized that the perfect mirror offered a potential solution for high-power transmission. With further computations and pioneering laboratory work, the team developed a hollow-core fiber — essentially a dielectric perfect mirror rolled up into a tube — designed in such a way, based on photonics, to transmit high-power lasers.

To take this idea beyond the laboratory into useful applications, in 2000, Joannopoulos and Fink helped form OmniGuide Communications, a company dedicated to developing and marketing the new hollow-core fiber. Further computations over the next few years — in San Diego, Illinois and Pittsburgh — explored other fundamental issues and phenomena of this new class of cylindrical photonic-crystal fiber.

In endoscopic surgery, the lack of a fiber for high-power transmission has meant that the laser had to be delivered to a patient via an apparatus with an articulated arm and large handpiece — which has precluded using these precise lasers for many minimally invasive procedures. For this reason, the surgery to treat RRP required dislocating the patient's jaw and general anesthesia, so that the laser could be brought close enough to the affected area.

A test case for OmniGuide's hollow-core fiber presented itself last year. In serious cases of RRP, the surgery often must be repeated to keep the breathing passage open. Dr. Jamie Koufman, director of the Center for Voice and Swallowing Disorders of Wake Forest University Baptist Medical Center, had a woman RRP patient who had undergone several previous RRP surgeries, but once again had developed near-total obstruction of the larynx and trachea.

Koufman obtained FDA approval to use the prototype fiber. She used a numbing topical spray in the throat and trachea, requiring no anesthesia, and with a CO2 laser delivered via an OmniGuide fiber cleared the RRP growths. The patient, who went home that day, is doing fine.

“Unsedated, laryngeal laser surgery with the OmniGuide fiber is a dream come true for me as an endoscopic surgeon,” said Koufman. “The patient loved it because it was easy for her.” Typical cost of RRP operating-room surgery with general anesthesia is $25,000. With expected FDA approval, the new procedure promises large cost savings nationally.

“These novel optical fibers, based on photonic crystals offer a new approach for medical lasers, making it possible to guide a CO2 laser beam, which can cut tissue with high precision, into a patient's body through a very small incision,” said Joannopoulos. “It will likely prove itself useful for many procedures.”

Computational science has come a long way over the past 20 years,” he added. “Even well known equations can have remarkable unexpected consequences that we would never learn about without these powerful computational engines, such as LeMieux (PSC's terascale system). This is just one advance that highlights how these machines are invaluable tools of discovery.”

Michael Schneider is a senior science writer at the Pittsburgh Supercomputing Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Sunway TaihuLight system and a third paper on 3D image recon Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This