Healing Light

By By Michael Schneider

September 1, 2005

Modeling of photonic crystals at NSF supercomputing centers, now partners in the TeraGrid, over several years has led the way to a major advance in laser surgery, exemplifying how computational simulations no longer take a back seat in driving scientific discovery.

In November 2004, a woman in North Carolina with potentially suffocating growths in her larynx and trachea had them removed by a high-power laser — and went home the same day. This condition had never before been treated without anesthesia and operating-room surgery. Six years earlier, physicists at MIT used supercomputers to learn something no one knew about mirrors.

These two seemingly separate events indeed are linked. A new laser technology, developed from a startling insight into the physics of light, may have saved the woman's life and, at the least, promises huge savings in the treatment of her disease — recurrent respiratory papillomatosis — one that affects tens of thousands of people in the United States alone.

It's a success, furthermore, that exemplifies how supercomputing is no longer merely a supporting character, but with increasing frequency plays a lead role in scientific discovery. In 1998, John Joannopoulos and his team of researchers at MIT discovered what has come to be called a “perfect mirror.” Their “eureka!” moment came not in the laboratory or with pencil and paper working out of mathematical theory; it happened because a computational model produced results no one expected.

For the past decade, Joannopoulos and his team have pushed forward new understanding of “photonic crystals” — fascinating materials, crafted from layers of silicon, which have unprecedented ability to trap, guide and control light. While he works closely with a laboratory team, headed by MIT professor Yoel Fink, to fabricate these challenging materials, a key to this work driving forward has been computational simulations that predict — successfully and precisely — how photonic crystals will work in advance of actually making them. “Computation,” said Joannopoulos, “has played a dominant role in the study of photonic crystals.”

The Perfect Mirror

It may be the most significant advance in mirror technology, said the New York Times, since Narcissus fell in love with his own image in a pool of water. The perfect mirror is so called because it reflects light at any angle with virtually no loss of energy. As a result, it makes possible a number of applications in optical technology, the most significant to date being flexible optical fiber that can transmit the high-powered CO2 lasers used in endoscopic surgery.

Until Joannopoulos' team's 1998 finding, reported with a paper in Science, mirrors were understood to come in two basic flavors, both with inherent limitations. Everyone who looks in the bathroom mirror for signs of life in the morning knows about metallic mirrors. They work all too well for seeing your own face, but they don't work to make optical fiber because a large portion of the light leaks away, absorbed by the metal, rather than reflected.

For optical fiber and other applications where energy loss matters, the choice has been mirrors made from dielectrics — materials that don't conduct electricity well. Dielectrics generally don't reflect light well either, but scientists have found ways to alternate thin dielectric layers of different reflective properties to achieve reflection without energy loss. The drawback has been that these dielectric mirrors reflect light only from certain angles, and their application depends on being able to use light at a limited range of angles and frequencies.

This limitation was thought to be a law of nature, like gravity – no way to get around it — until 1998, when Joannopoulos and company noticed anomalous results from a computational model of a photonic crystal mirror they were running at the San Diego Supercomputer Center. The light seemed to reflect at a much larger angle than was thought possible. “We saw some interesting results in the computation,” he said. “Then came the theory to explain the computation, and then came a real experiment making something like this and testing it.”

The result: a multi-layered dielectric mirror that reflects light from all angles without energy loss. Within a few years, the perfect mirror proved to be the solution for delivering a high-powered laser via flexible optical fiber.

Open Wide for a High-Power Laser

Fiber optics to transmit visible light, based on conventional dielectric mirror technology, has been around for years. These silica-based fibers have a light-carrying core with an index-of-refraction higher than the surrounding material. This layered approach traps light within the inner core — called “total internal reflection.” It works well for visible light, but high-power lasers — such as CO2 lasers used in endoscopic surgery — will melt conventional optical fiber.

Joannopoulos and Fink realized that the perfect mirror offered a potential solution for high-power transmission. With further computations and pioneering laboratory work, the team developed a hollow-core fiber — essentially a dielectric perfect mirror rolled up into a tube — designed in such a way, based on photonics, to transmit high-power lasers.

To take this idea beyond the laboratory into useful applications, in 2000, Joannopoulos and Fink helped form OmniGuide Communications, a company dedicated to developing and marketing the new hollow-core fiber. Further computations over the next few years — in San Diego, Illinois and Pittsburgh — explored other fundamental issues and phenomena of this new class of cylindrical photonic-crystal fiber.

In endoscopic surgery, the lack of a fiber for high-power transmission has meant that the laser had to be delivered to a patient via an apparatus with an articulated arm and large handpiece — which has precluded using these precise lasers for many minimally invasive procedures. For this reason, the surgery to treat RRP required dislocating the patient's jaw and general anesthesia, so that the laser could be brought close enough to the affected area.

A test case for OmniGuide's hollow-core fiber presented itself last year. In serious cases of RRP, the surgery often must be repeated to keep the breathing passage open. Dr. Jamie Koufman, director of the Center for Voice and Swallowing Disorders of Wake Forest University Baptist Medical Center, had a woman RRP patient who had undergone several previous RRP surgeries, but once again had developed near-total obstruction of the larynx and trachea.

Koufman obtained FDA approval to use the prototype fiber. She used a numbing topical spray in the throat and trachea, requiring no anesthesia, and with a CO2 laser delivered via an OmniGuide fiber cleared the RRP growths. The patient, who went home that day, is doing fine.

“Unsedated, laryngeal laser surgery with the OmniGuide fiber is a dream come true for me as an endoscopic surgeon,” said Koufman. “The patient loved it because it was easy for her.” Typical cost of RRP operating-room surgery with general anesthesia is $25,000. With expected FDA approval, the new procedure promises large cost savings nationally.

“These novel optical fibers, based on photonic crystals offer a new approach for medical lasers, making it possible to guide a CO2 laser beam, which can cut tissue with high precision, into a patient's body through a very small incision,” said Joannopoulos. “It will likely prove itself useful for many procedures.”

Computational science has come a long way over the past 20 years,” he added. “Even well known equations can have remarkable unexpected consequences that we would never learn about without these powerful computational engines, such as LeMieux (PSC's terascale system). This is just one advance that highlights how these machines are invaluable tools of discovery.”

Michael Schneider is a senior science writer at the Pittsburgh Supercomputing Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire