Finding a Way to Test Dark Energy

By Nicole Hemsoth

September 9, 2005

What is the mysterious dark energy that's causing the expansion of the universe to accelerate? Is it some form of Einstein's famous cosmological constant or an exotic repulsive force, dubbed “quintessence,” that could make up as much as three-quarters of the cosmos? Scientists from Lawrence Berkeley National Laboratory and Dartmouth College believe there is a way to find out.

In a paper to be published in Physical Review Letters, physicists Eric Linder of Berkeley Lab and Robert Caldwell of Dartmouth show that physics models of dark energy can be separated into distinct scenarios, which could be used to rule out Einstein's cosmological constant and explain the nature of dark energy. What's more, scientists should be able to determine which of these scenarios is correct with the experiments being planned for the Joint Dark Energy Mission (JDEM), which has been proposed by NASA and the U.S. Department of Energy.

“Scientists have been arguing the question 'how precisely do we need to  measure dark energy in order to know what it is?'” said Linder. “What we  have done in our paper is suggest precision limits for the measurements.  Fortunately, these limits should be within the range of the JDEM  experiments.” 

Linder and Caldwell are members of the DOE-NASA science definition  team for JDEM, which has the responsibility for drawing up the mission's  scientific requirements. Linder is the leader of the theory group for SNAP (SuperNova/Acceleration Probe), one of the proposed vehicles for  carrying out the JDEM mission. Caldwell, a professor of physics and  astronomy at Dartmouth, is one of the originators of the quintessence concept.

In their paper, Linder and Caldwell describe two  scenarios, one they call “thawing” and one they call “freezing,” which point toward distinctly different fates for our permanently expanding universe. Under the thawing scenario, the acceleration of the expansion will gradually decrease and eventually come to a stop, like a car when the driver eases on the gas pedal. Expansion may continue more slowly, or  the universe may even recollapse. Under the freezing scenario, acceleration continues indefinitely, like a car with the gas pedal pushed  to the floor. The universe would become increasingly diffuse, until eventually our galaxy would find itself alone in space.

Either of these two scenarios rules out Einstein's cosmological constant. In their paper, Linder and Caldwell show, for the first time, how to cleanly separate Einstein's idea from other possibilities. Under any scenario, however, dark energy is a force that must be reckoned with.

According to Linder, “Because dark energy makes up about 70 percent of the content  of the universe, it dominates over the matter content. That means dark  energy will govern expansion and, ultimately, determine the fate of the  universe.”

In 1998, two research groups rocked the field of cosmology with their independent announcements that the expansion of the universe is accelerating. By measuring the redshift of light from Type Ia supernovae, deep-space stars that explode with a characteristic energy, teams from the  Supernova Cosmology Project, headquartered at Berkeley Lab, and the High-Z Supernova Search Team, based in Australia, determined the expansion  of the universe is actually accelerating, not decelerating. The unknown force behind this accelerated expansion was given the name “dark energy.”

Prior to the discovery of dark energy, conventional scientific wisdom held  that the Big Bang had resulted in an expansion of the universe that would gradually be slowed by gravity. If the matter content in the universe  provided enough gravity, one day the expansion would stop altogether and the universe would fall back on itself in a Big Crunch. If the gravity from matter was insufficient to completely stop the expansion, the  universe would continue floating apart forever.

“From the announcements in 1998 and subsequent measurements, we now know that the accelerated expansion of the universe did not start until  sometime in the last 10 billion years,” Caldwell said.

Cosmologists are now scrambling to determine what exactly dark energy is. In 1917, Einstein amended his General Theory of Relativity with a cosmological constant, which, if the value was right, would allow the universe to exist in a perfectly balanced, static state. Although history's most famous physicist would later call the addition of this constant his “greatest blunder,” the discovery of dark energy has revived  the idea.

“The cosmological constant was a vacuum energy (the energy of empty space) that kept gravity from pulling the universe in on itself,” said Linder. “A problem with the cosmological constant is that it is constant, with the same energy density, pressure and equation of state over time. Dark energy, however, had to be negligible in the universe's earliest stages; otherwise, the galaxies and all their stars would never have formed.”

For Einstein's cosmological constant to result in the universe we see today, the energy scale would have to be many orders of magnitude smaller than anything else in the universe. While this may be possible, Linder said, it does not seem likely. Enter the concept of “quintessence,” named after the fifth element of the ancient Greeks, in addition to air, earth, fire and water; they believed it to be the force that held the moon and  stars in place.

“Quintessence is a dynamic, time-evolving and spatially dependent form of energy with negative pressure sufficient to drive the accelerating expansion,” said Caldwell. “Whereas the cosmological constant is a very  specific form of energy — vacuum energy — quintessence encompasses a  wide class of possibilities.”

To limit the possibilities for quintessence and provide firm targets for basic tests that would also confirm its candidacy as the source of dark energy, Linder and Caldwell used a scalar field as their model. A scalar field possesses a measure of value, but not direction, for all points in space. With this approach, the authors were able to show quintessence as a scalar field relaxing its potential energy down to a minimum value. Think of a set of springs under tension and exerting a negative pressure that  counteracts the positive pressure of gravity.

“A quintessence scalar field is like a field of springs covering every  point in space, with each spring stretched to a different length,” Linder said. “For Einstein's cosmological constant, each spring would be the same length and motionless.”

Under their thawing scenario, the potential energy of the quintessence field was “frozen” in place until the decreasing material density of an expanding universe gradually released it. In the freezing scenario, the  quintessence field has been rolling toward its minimum potential since the universe underwent inflation, but as it comes to dominate the universe it gradually becomes a constant value.

The SNAP proposal is in research and development by physicists, astronomers, and engineers at Berkeley Lab, in collaboration with colleagues from the University of California at Berkeley and many other institutions; it calls for a three-mirror, two-meter reflecting telescope in  deep-space orbit that would be used to find and measure thousands of Type Ia supernovae each year. These measurements should provide enough information to clearly point toward either the thawing or freezing scenario — or to something else entirely new and unknown.

Said Linder: “If the results from measurements such as those that could be made with SNAP lie outside the thawing or freezing scenarios, then we may have to look beyond quintessence, perhaps to even more exotic physics, such as a modification of Einstein's General Theory of Relativity to explain dark energy.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This