Swami, the Next Generation Biology Workbench

By Lynne Friedmann

October 28, 2005

A free, web-based interface that links molecular biology databases with analysis programs — accessed thousands of times a week by scientists and students worldwide — is about to become even better.

In May, the San Diego Supercomputer Center at UC San Diego announced the award of $2.2 million from the National Institutes of Health to build on the ground-breaking “Biology Workbench.” Introduced by pioneering bioinformatics researcher Shankar Subramaniam nearly a decade ago, Workbench provides broad access to many biology software tools and data resources through a web-based, point-and-click computational environment. The offering also delivers the advantage of speed, letting researchers complete within hours work that once took days or even months.

The Next Generation Biology Workbench (NGBW), also known as Swami, is a versatile biological analysis environment that lets users search up-to-date protein and nucleic acid sequence databases. Searching is integrated with access to a variety of analysis and modeling tools — all within a point-and-click interface that eliminates file format compatibility problems. This has made the Workbench an indispensable resource for scientists who work in bioinformatics, an emerging discipline in which researchers collect, integrate, model and analyze the explosion of biological data produced by such efforts as the Human Genome Project.

In addition to adding to fundamental scientific knowledge, this research can lead to improved understanding of disease and open the door to development of new treatments and drug discovery. The NGBW prototype, as well as links to the current Biology Workbench can be found at http://www.ngbw.org.

“I have been using Biology Workbench on a regular basis for the last three to four years,” said Vanderbilt University assistant professor Mark de Caestecker. “It has proved to be an invaluable tool for the analysis and design of gene and protein constructs used in a range of different experiments in my laboratory. The Biology Workbench has the most comprehensive and easy-to-use applications I have come across.” In his research, de Caestecker studies stem cell differentiation in kidney development, cancer, and tissue injury repair, and also researches cellular signaling in relation to hypertension.

Researchers are making Biology Workbench even more useful by expanding its present offering of 65 tools. Like the original, NGBW will continue as a free web resource that offers access to data, data storage, software tools and computational resources that help researchers mine the information in many popular protein and nucleic acid sequence databases. NIH funding will support the construction of up-to-date features such as improved user interfaces and an expandable architecture that will allow the NGBW to continue to evolve in the future in response to new developments in technology, biology and the needs of scientists.

“There have been huge leaps in the technologies used in building cyberinfrastructure since the original Biology Workbench was created,” said Mark A. Miller, SDSC project leader for the new grant.

Work will be done in phases with a beta release planned for April 2006. According to Miller, there are some upgrades that can be accomplished in a matter of months, while others will take a year or two to accomplish. For example, the current workbench integrates information from 33 public databases, which are downloaded into a flat file. Using the less powerful technology of the flat file format places significant limitations on search functionality. Therefore, a major goal of the Next Generation project is to adopt a relational database format in which the information is broken down into tables and categories, which then allows more complex queries, or scientific questions, to be answered.

“Software developers always want to make things very elegant so they can later expand and make them more modular,” said Miller. “We do want that, but we don’t want to make people wait five years for the next product. So our focus is giving users something today and then making it more elegant underneath.”

Other improvements will include enhanced visualization and data management capabilities, and to make sure that these services are available even to users with only a lower speed dial-up modem. This will enable a range of users to pose sophisticated questions, even if they don’t have access to advanced computing resources.

While not losing sight of the researcher with limited financial resources for whom the Biology Workbench was originally developed, enhancements to the Next Generation Biology Workbench are expected to also capture more high-end users. The current workbench, running on a Sun Microsystems Inc. computer, allows access to more than 32,000 active users, the majority of whom look at single sequences, submitting more than 120,000 requests for analysis or jobs monthly. This is not high demand, and consequently not expensive computationally.

“We could probably handle four times that amount without breathing hard,” said Miller. “But the current system is limited because of how the file system is structured. I believe we can design the Next Generation Biology Workbench so it will be fully expandable in the future.”

A core goal of the project is to improve the Workbench using new technologies. The design goals include using an architecture that allows the NGBW to be freely available for distribution, and developed within the available budget and a short time frame. The team has addressed these issues by leveraging the Java Enterprise Edition software stack as implemented by the open-source JBoss 4.0 Application Server. The new workbench stores and retrieves data from relational databases by mapping Java objects to relational entities using JBoss’ Hibernate persistence library. The user works with this data through a user-friendly, Web front-end that is implemented using the Apache Struts web-application framework.

“Because many users do not have authorization or sometimes the ability to install programs on their computers, we’re developing very lightweight visualization tools that run effectively from the server side at SDSC,” said Miller. This ensures that a wider range of users can benefit from NGBW data and tools.

Another challenge is how to support the wide variety of analytical tools made available within the Workbench, since such tools typically have very specific input and output format requirements. To do this, Miller explains, the developers must “wrap” each separate program, putting a translator between it and the central NGBW architecture, so that data supplied by the user can be passed to any of the analytical programs in the Workbench in the language it can interpret. In turn, the translator returns output to the user in a common format. Since developers are using a well-defined common language, this also makes it straightforward for others to create their own tools to be added to or work with the Workbench.

Because navigating the interface is comparable to learning the Windows or Macintosh operating systems, it didn’t take long for instructors to embrace the original Biology Workbench as a teaching tool. Responding to this growing user segment, SDSC researchers are partnering with colleagues at the National Center for Supercomputing Applications (NCSA), where the workbench was initially developed, in developing an educational component.

According to Miller, consulting with educators in the early stages of the Next Generation Biology Workbench design “will keep us from getting too far off the beam making a nice architecture but the wrong functions.” The outcome will be a dedicated component or view for students and teachers, called the Student Biology Workbench.

This is welcome news to instructors such as Celeste Brown, Bioinformatics Coordinator, Initiative for Bioinformatics and Evolutionary Studies at the University of Idaho. “Ten years ago a graduate student found the Biology Workbench (on the web) and brought it to my attention,” she said. “I’ve been using it for teaching ever since.”

A web search reveals a range of lesson plans designed specifically with the Biology Workbench. Many are from smaller institutions of higher education, such as the University of Idaho. The use of the Biology Workbench in this setting should be welcome news to the NIH, which supports an initiative to encourage bioinformatics training in states that have historically not received a high a level of government grant dollars. In this program, 23 states and Puerto Rico qualify for additional NIH support for faculty development and enhancement of research infrastructure under the Institutional Development Award (IDeA) Program. While there isn’t a requirement that IDeA states use the Biology Workbench to train students, many do.

At the University of Idaho, an evolutionary perspective is the emphasis of biology training. “But let’s face it, nobody really likes development lab where you put an egg into a Petri dish and watch how it develops into a chicken,” said Brown. “A tool like the Biology Workbench puts things in context and reinforces scientific principles learned in earlier classes. Besides, students are used to a lot more technology than they were 10 years ago.”

Brown uses the Biology Workbench in an introductory enzyme lab course to access 3-D structures from the database. Students not only see what’s going on in the reactions they set up, they can then consider how the structures evolved. “I want students to understand that there are databases out there that have all this nucleotide and protein sequence information,” said Brown. “I also want them to realize that it’s easy to get to and there are a lot of tools out there to help them analyze what’s in those databases.”

Outside the classroom researchers have become aware of the Biology Workbench through scientific publications. In many cases, at the end of a commercial software review, the Biology Workbench is mentioned as a free solution that scientists might also wish to consider. When the Next Generation Biology Workbench is ready for release, there is travel support in the NIH grant for a “roll out” of its new capabilities at a series of major national scientific meetings.

“The original Biology Workbench created a new paradigm for integrating biological information and tools, giving easy access to researchers as well as students,” said Shankar Subramaniam, professor of Bioengineering and director of the Bioinformatics Program at UCSD. “It’s rewarding to see the growing interest in this resource, and bringing the workbench forward using modern technologies will make this important tool more versatile and available to an even broader range of users.”

When Miller recently posted an Internet request for testimonials about the Biology Workbench he heard from students, teachers and researchers from all around the world. Feedback includes such superlatives as “invaluable,” “easy to use,” “faster and more efficient than other tools” and “critical for completion of my thesis research.”

According to Gabriel M. Belfort, an M.D./Ph.D. candidate at Boston University School of Medicine, “Not having the Biology Workbench would be the functional equivalent of replacing my computer with an abacus.”

The Next Generation Biology Workbench team at SDSC includes Mark Miller, PI; Mike Cleary, co-PI and user advocate; Shankar Subramaniam, co-PI; Kevin Fowler, senior software architect; Roger Unwin, database engineer; Gregory Quinn, senior interface engineer; and Ashton Taylor, artist. Celeste Brown of the University of Idaho is education advisor and bioinformatics coordinator.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire