Swami, the Next Generation Biology Workbench

By Lynne Friedmann

October 28, 2005

A free, web-based interface that links molecular biology databases with analysis programs — accessed thousands of times a week by scientists and students worldwide — is about to become even better.

In May, the San Diego Supercomputer Center at UC San Diego announced the award of $2.2 million from the National Institutes of Health to build on the ground-breaking “Biology Workbench.” Introduced by pioneering bioinformatics researcher Shankar Subramaniam nearly a decade ago, Workbench provides broad access to many biology software tools and data resources through a web-based, point-and-click computational environment. The offering also delivers the advantage of speed, letting researchers complete within hours work that once took days or even months.

The Next Generation Biology Workbench (NGBW), also known as Swami, is a versatile biological analysis environment that lets users search up-to-date protein and nucleic acid sequence databases. Searching is integrated with access to a variety of analysis and modeling tools — all within a point-and-click interface that eliminates file format compatibility problems. This has made the Workbench an indispensable resource for scientists who work in bioinformatics, an emerging discipline in which researchers collect, integrate, model and analyze the explosion of biological data produced by such efforts as the Human Genome Project.

In addition to adding to fundamental scientific knowledge, this research can lead to improved understanding of disease and open the door to development of new treatments and drug discovery. The NGBW prototype, as well as links to the current Biology Workbench can be found at http://www.ngbw.org.

“I have been using Biology Workbench on a regular basis for the last three to four years,” said Vanderbilt University assistant professor Mark de Caestecker. “It has proved to be an invaluable tool for the analysis and design of gene and protein constructs used in a range of different experiments in my laboratory. The Biology Workbench has the most comprehensive and easy-to-use applications I have come across.” In his research, de Caestecker studies stem cell differentiation in kidney development, cancer, and tissue injury repair, and also researches cellular signaling in relation to hypertension.

Researchers are making Biology Workbench even more useful by expanding its present offering of 65 tools. Like the original, NGBW will continue as a free web resource that offers access to data, data storage, software tools and computational resources that help researchers mine the information in many popular protein and nucleic acid sequence databases. NIH funding will support the construction of up-to-date features such as improved user interfaces and an expandable architecture that will allow the NGBW to continue to evolve in the future in response to new developments in technology, biology and the needs of scientists.

“There have been huge leaps in the technologies used in building cyberinfrastructure since the original Biology Workbench was created,” said Mark A. Miller, SDSC project leader for the new grant.

Work will be done in phases with a beta release planned for April 2006. According to Miller, there are some upgrades that can be accomplished in a matter of months, while others will take a year or two to accomplish. For example, the current workbench integrates information from 33 public databases, which are downloaded into a flat file. Using the less powerful technology of the flat file format places significant limitations on search functionality. Therefore, a major goal of the Next Generation project is to adopt a relational database format in which the information is broken down into tables and categories, which then allows more complex queries, or scientific questions, to be answered.

“Software developers always want to make things very elegant so they can later expand and make them more modular,” said Miller. “We do want that, but we don’t want to make people wait five years for the next product. So our focus is giving users something today and then making it more elegant underneath.”

Other improvements will include enhanced visualization and data management capabilities, and to make sure that these services are available even to users with only a lower speed dial-up modem. This will enable a range of users to pose sophisticated questions, even if they don’t have access to advanced computing resources.

While not losing sight of the researcher with limited financial resources for whom the Biology Workbench was originally developed, enhancements to the Next Generation Biology Workbench are expected to also capture more high-end users. The current workbench, running on a Sun Microsystems Inc. computer, allows access to more than 32,000 active users, the majority of whom look at single sequences, submitting more than 120,000 requests for analysis or jobs monthly. This is not high demand, and consequently not expensive computationally.

“We could probably handle four times that amount without breathing hard,” said Miller. “But the current system is limited because of how the file system is structured. I believe we can design the Next Generation Biology Workbench so it will be fully expandable in the future.”

A core goal of the project is to improve the Workbench using new technologies. The design goals include using an architecture that allows the NGBW to be freely available for distribution, and developed within the available budget and a short time frame. The team has addressed these issues by leveraging the Java Enterprise Edition software stack as implemented by the open-source JBoss 4.0 Application Server. The new workbench stores and retrieves data from relational databases by mapping Java objects to relational entities using JBoss’ Hibernate persistence library. The user works with this data through a user-friendly, Web front-end that is implemented using the Apache Struts web-application framework.

“Because many users do not have authorization or sometimes the ability to install programs on their computers, we’re developing very lightweight visualization tools that run effectively from the server side at SDSC,” said Miller. This ensures that a wider range of users can benefit from NGBW data and tools.

Another challenge is how to support the wide variety of analytical tools made available within the Workbench, since such tools typically have very specific input and output format requirements. To do this, Miller explains, the developers must “wrap” each separate program, putting a translator between it and the central NGBW architecture, so that data supplied by the user can be passed to any of the analytical programs in the Workbench in the language it can interpret. In turn, the translator returns output to the user in a common format. Since developers are using a well-defined common language, this also makes it straightforward for others to create their own tools to be added to or work with the Workbench.

Because navigating the interface is comparable to learning the Windows or Macintosh operating systems, it didn’t take long for instructors to embrace the original Biology Workbench as a teaching tool. Responding to this growing user segment, SDSC researchers are partnering with colleagues at the National Center for Supercomputing Applications (NCSA), where the workbench was initially developed, in developing an educational component.

According to Miller, consulting with educators in the early stages of the Next Generation Biology Workbench design “will keep us from getting too far off the beam making a nice architecture but the wrong functions.” The outcome will be a dedicated component or view for students and teachers, called the Student Biology Workbench.

This is welcome news to instructors such as Celeste Brown, Bioinformatics Coordinator, Initiative for Bioinformatics and Evolutionary Studies at the University of Idaho. “Ten years ago a graduate student found the Biology Workbench (on the web) and brought it to my attention,” she said. “I’ve been using it for teaching ever since.”

A web search reveals a range of lesson plans designed specifically with the Biology Workbench. Many are from smaller institutions of higher education, such as the University of Idaho. The use of the Biology Workbench in this setting should be welcome news to the NIH, which supports an initiative to encourage bioinformatics training in states that have historically not received a high a level of government grant dollars. In this program, 23 states and Puerto Rico qualify for additional NIH support for faculty development and enhancement of research infrastructure under the Institutional Development Award (IDeA) Program. While there isn’t a requirement that IDeA states use the Biology Workbench to train students, many do.

At the University of Idaho, an evolutionary perspective is the emphasis of biology training. “But let’s face it, nobody really likes development lab where you put an egg into a Petri dish and watch how it develops into a chicken,” said Brown. “A tool like the Biology Workbench puts things in context and reinforces scientific principles learned in earlier classes. Besides, students are used to a lot more technology than they were 10 years ago.”

Brown uses the Biology Workbench in an introductory enzyme lab course to access 3-D structures from the database. Students not only see what’s going on in the reactions they set up, they can then consider how the structures evolved. “I want students to understand that there are databases out there that have all this nucleotide and protein sequence information,” said Brown. “I also want them to realize that it’s easy to get to and there are a lot of tools out there to help them analyze what’s in those databases.”

Outside the classroom researchers have become aware of the Biology Workbench through scientific publications. In many cases, at the end of a commercial software review, the Biology Workbench is mentioned as a free solution that scientists might also wish to consider. When the Next Generation Biology Workbench is ready for release, there is travel support in the NIH grant for a “roll out” of its new capabilities at a series of major national scientific meetings.

“The original Biology Workbench created a new paradigm for integrating biological information and tools, giving easy access to researchers as well as students,” said Shankar Subramaniam, professor of Bioengineering and director of the Bioinformatics Program at UCSD. “It’s rewarding to see the growing interest in this resource, and bringing the workbench forward using modern technologies will make this important tool more versatile and available to an even broader range of users.”

When Miller recently posted an Internet request for testimonials about the Biology Workbench he heard from students, teachers and researchers from all around the world. Feedback includes such superlatives as “invaluable,” “easy to use,” “faster and more efficient than other tools” and “critical for completion of my thesis research.”

According to Gabriel M. Belfort, an M.D./Ph.D. candidate at Boston University School of Medicine, “Not having the Biology Workbench would be the functional equivalent of replacing my computer with an abacus.”

The Next Generation Biology Workbench team at SDSC includes Mark Miller, PI; Mike Cleary, co-PI and user advocate; Shankar Subramaniam, co-PI; Kevin Fowler, senior software architect; Roger Unwin, database engineer; Gregory Quinn, senior interface engineer; and Ashton Taylor, artist. Celeste Brown of the University of Idaho is education advisor and bioinformatics coordinator.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This