A Conversation with PSC’s Nick Nystrom

By Nicole Hemsoth

November 11, 2005

In this exclusive interview, HPCwire discussed recent HPC activities at the Pittsburgh Supercomputing Center with Nick Nystrom, PSC's director of strategic applications and a research physicist at Carnegie Mellon University.  PSC is an NSF center and one of the premier facilities for computational science in the U.S.

HPCwire: PSC historically has been the first, or one of the first, to receive new HPC systems that major vendors develop. From a scientist's standpoint, what are the advantages of gaining access to systems this early on?

Nystrom: Accessing more powerful capability-class systems allows scientists to increasingly address the problems they really want to solve, rather than simplifications. One can go to realistic resolution and model all relevant degrees of freedom. This translates into a better return on investment. R&D cost is high, so rapidly translating the investment required to develop a new system into results of scientific, economic, and national importance ideally leverages that investment.

HPCwire: Big Ben, the PSC's Cray XT3, went into production on October 1. Can you provide some examples of scientific breakthroughs made possible through that resource?

Nystrom: Actually, breakthroughs began well before production. In April 2005, PSC scientists Troy Wymore and Shawn Brown performed a series of path integral quantum mechanical/molecular mechanics runs to elucidate the molecular basis of two different metabolic diseases, Hyperprolinemia Type II and Sjogren-Larsson Syndrome.

More recently, Yang Wang, in collaboration with Oak Ridge National Laboratory and Florida Atlantic University, performed a record-breaking electronic structure calculation on an iron nanoparticle embedded in an iron-aluminum binary compound. This 16,000-atom calculation required 1,600 Cray XT3 processors using LSMS 2.0, which Yang recently extended to facilitate designing new materials with specific magnetic properties.

HPCwire: How does Big Ben fit as an NSF TeraGrid resource?

Nystrom: Big Ben is PSC's newest contribution to the TeraGrid. The XT3's SeaStar interconnect, which features very high bandwidth and which at PSC is configured as a 3D torus, is ideal for challenging simulations that require thousands of processors. However, that's not to say that it's restricted to standalone, tightly coupled applications. For example, Nathan Stone, in PSC's Advanced Systems group, developed a library to allow I/O over the SeaStar's low-level Portals communications protocol, which is now being used by Prof. Paul Woodward to interactively steer very large CFD calculations. Paul and other researchers at the University of Minnesota can initiate calculations on Big Ben, visualize in real time the results on their power wall, and adjust parameters of the calculation as it executes. This interactivity will greatly reduce the time to solution for important problems in turbulence.

HPCwire: How much impact do advances in HPC technology have on advances in science?  How direct is the relationship between the two?

Nystrom: The impact of HPC on science can be tremendous for a variety of reasons. Large-scale computations can probe phenomena that are observationally inaccessible or that would be prohibitively expensive. A nice example of that is work by the Quake group at Carnegie Mellon University. Their simulations of earthquakes in the Los Angeles basin require detailed knowledge of subsurface geology, which they infer through a computationally demanding inverse procedure. New end-to-end runs on the XT3, including everything from meshing through visualization, will allow a groundbreaking 2Hz simulation on over 10 billion elements. Going to those levels of resolution is necessary to obtain better predictions of ground motion, which in turn can guide construction planning and disaster preparedness.

Similarly, work performed by Prof. Klaus Schulten and Emad Tajkorshid of the University of Illinois on PSC's systems elucidated the passage of water, but not protons, through aquaporins, which are important membrane proteins. Their work complemented the experimental work for which Dr. Petre Agre received the 2003 Nobel prize in chemistry, and a visualization of their aquaporin simulation is available at the Nobel website.

HPCwire: I understand that LeMieux, PSC's big Alpha system, is still heavily utilized.  How are people taking to Big Ben, your new 10-teraflop Cray XT3?

Nystrom: Interest has been quite high. Prior to Big Ben going into production, a number of research groups participated as “friendly users”, gaining experience and porting their applications as we brought the system to readiness. Most of those have gone on to apply for production allocations, and others are transitioning from LeMieux.

Much of Big Ben's appeal is due to performance. Considering only clock speeds, Big Ben might be expected to be only 2.4 times as fast as LeMieux, processor-for-processor. But that doesn't take into account communications, which for many realistic applications are critically important. To illustrate that point, PSCC, a Parallelized Spectral Channel Code for simulating turbulent boundary layers, runs up to 10.5 times as fast on 512 XT3 processors as it does on 512 LeMieux processors. That improvement is due to the interconnect bandwidth.

HPCwire: What are some scientific problems or disciplines that will benefit most from sustained petaflop speed?

Nystrom: It's difficult to think of disciplines that would fail to benefit, given the desire to ask the hard questions and the resources to address them. Biophysics, engineering, materials science, ecology… Really, however, the greatest rewards will be obtained as simulations span disciplines and address ranges of scales. For example, from a molecular viewpoint, protein-enzyme interactions are extremely demanding computationally, with ab initio molecular dynamics calculations easily consuming hundreds of thousands of CPU hours. But those reactions occur in the context of cells, and modeling the system across that range, including reactions, kinetics, permeation and microphysiology will ultimately be required to understand processes such as cell metabolism and drug delivery. Such mesoscale modeling will require vast resources, and it is not unique to biology.  It applies to most scientific domains.

HPCwire: Is HPC being used as aggressively as it should be in science?

Nystrom: Researchers using computational science today are obtaining excellent results and clearly demonstrating the role for HPC throughout science. However, we can do a better job of communicating to those who are not yet using HPC that hardware and software resources, together with expertise in using those resources, are available to help them. Also, there is an ongoing need for investment in scalable software and infrastructure. As we scaled our systems to thousands of processors, we met and overcame new challenges, and we'll have to do that again as we scale to petascale systems.

HPCwire: We often hear people talk about a shortage of people who have expertise in both their scientific discipline and computational science.  Do you see this as a problem?

Nystrom: Such individuals exist, although due to specialization in scientific domains and increasing sophistication of software, people who are proficient in both certainly aren't common. Supercomputing centers play a vital role in that respect, acting as a bridge between domain experts and the resources needed to address the science. This need will continue to evolve as systems scale to the petaflop regime, with significant challenges in software design and implementation.

HPCwire: What can we expect to see from PSC at SC05 and beyond?

Nystrom: PSC will present exciting work representing a variety of interests in applications, networking, biomed, and systems. We've seen great scientific results on Big Ben, and a number of users will be present to demo and present their work first-hand.

PSC is intimately involved in SC05 networking, including supporting the Open InfiniBand (OpenIB) network for SCinet. Our networking group will also make presentations and perform demonstrations on the NPAD (Network Path and Application Diagnostics) project, which is funded by the NSF's “Strategic Technologies for the Internet” Initiative and addresses problems of network path delay inherent in transmitting data across wide area networks. They'll also show the HPN-SSH, a high-performance secure shell, which eliminates a known ssh bottleneck by allowing the flow control buffers to be defined at runtime.

PSC's Biomedical Initiative will be showing a variety of applications, including MCell for modeling stochastic microphysiology, DReAMM for model building and visualization, the PSC Volume Browser for volumetric visualization and analysis of massive datasets, and the Dynamo molecular simulation program for hybrid quantum mechanical/molecular mechanics simulations. In coming years, PSC will develop new web gateways for each of these applications, and workshops by the biomed group will address spatially realistic cell modeling, volumetric data analysis and visualization, and bioinformatics, especially targeting minority-serving institutions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This