A Conversation with PSC’s Nick Nystrom

By Nicole Hemsoth

November 11, 2005

In this exclusive interview, HPCwire discussed recent HPC activities at the Pittsburgh Supercomputing Center with Nick Nystrom, PSC's director of strategic applications and a research physicist at Carnegie Mellon University.  PSC is an NSF center and one of the premier facilities for computational science in the U.S.

HPCwire: PSC historically has been the first, or one of the first, to receive new HPC systems that major vendors develop. From a scientist's standpoint, what are the advantages of gaining access to systems this early on?

Nystrom: Accessing more powerful capability-class systems allows scientists to increasingly address the problems they really want to solve, rather than simplifications. One can go to realistic resolution and model all relevant degrees of freedom. This translates into a better return on investment. R&D cost is high, so rapidly translating the investment required to develop a new system into results of scientific, economic, and national importance ideally leverages that investment.

HPCwire: Big Ben, the PSC's Cray XT3, went into production on October 1. Can you provide some examples of scientific breakthroughs made possible through that resource?

Nystrom: Actually, breakthroughs began well before production. In April 2005, PSC scientists Troy Wymore and Shawn Brown performed a series of path integral quantum mechanical/molecular mechanics runs to elucidate the molecular basis of two different metabolic diseases, Hyperprolinemia Type II and Sjogren-Larsson Syndrome.

More recently, Yang Wang, in collaboration with Oak Ridge National Laboratory and Florida Atlantic University, performed a record-breaking electronic structure calculation on an iron nanoparticle embedded in an iron-aluminum binary compound. This 16,000-atom calculation required 1,600 Cray XT3 processors using LSMS 2.0, which Yang recently extended to facilitate designing new materials with specific magnetic properties.

HPCwire: How does Big Ben fit as an NSF TeraGrid resource?

Nystrom: Big Ben is PSC's newest contribution to the TeraGrid. The XT3's SeaStar interconnect, which features very high bandwidth and which at PSC is configured as a 3D torus, is ideal for challenging simulations that require thousands of processors. However, that's not to say that it's restricted to standalone, tightly coupled applications. For example, Nathan Stone, in PSC's Advanced Systems group, developed a library to allow I/O over the SeaStar's low-level Portals communications protocol, which is now being used by Prof. Paul Woodward to interactively steer very large CFD calculations. Paul and other researchers at the University of Minnesota can initiate calculations on Big Ben, visualize in real time the results on their power wall, and adjust parameters of the calculation as it executes. This interactivity will greatly reduce the time to solution for important problems in turbulence.

HPCwire: How much impact do advances in HPC technology have on advances in science?  How direct is the relationship between the two?

Nystrom: The impact of HPC on science can be tremendous for a variety of reasons. Large-scale computations can probe phenomena that are observationally inaccessible or that would be prohibitively expensive. A nice example of that is work by the Quake group at Carnegie Mellon University. Their simulations of earthquakes in the Los Angeles basin require detailed knowledge of subsurface geology, which they infer through a computationally demanding inverse procedure. New end-to-end runs on the XT3, including everything from meshing through visualization, will allow a groundbreaking 2Hz simulation on over 10 billion elements. Going to those levels of resolution is necessary to obtain better predictions of ground motion, which in turn can guide construction planning and disaster preparedness.

Similarly, work performed by Prof. Klaus Schulten and Emad Tajkorshid of the University of Illinois on PSC's systems elucidated the passage of water, but not protons, through aquaporins, which are important membrane proteins. Their work complemented the experimental work for which Dr. Petre Agre received the 2003 Nobel prize in chemistry, and a visualization of their aquaporin simulation is available at the Nobel website.

HPCwire: I understand that LeMieux, PSC's big Alpha system, is still heavily utilized.  How are people taking to Big Ben, your new 10-teraflop Cray XT3?

Nystrom: Interest has been quite high. Prior to Big Ben going into production, a number of research groups participated as “friendly users”, gaining experience and porting their applications as we brought the system to readiness. Most of those have gone on to apply for production allocations, and others are transitioning from LeMieux.

Much of Big Ben's appeal is due to performance. Considering only clock speeds, Big Ben might be expected to be only 2.4 times as fast as LeMieux, processor-for-processor. But that doesn't take into account communications, which for many realistic applications are critically important. To illustrate that point, PSCC, a Parallelized Spectral Channel Code for simulating turbulent boundary layers, runs up to 10.5 times as fast on 512 XT3 processors as it does on 512 LeMieux processors. That improvement is due to the interconnect bandwidth.

HPCwire: What are some scientific problems or disciplines that will benefit most from sustained petaflop speed?

Nystrom: It's difficult to think of disciplines that would fail to benefit, given the desire to ask the hard questions and the resources to address them. Biophysics, engineering, materials science, ecology… Really, however, the greatest rewards will be obtained as simulations span disciplines and address ranges of scales. For example, from a molecular viewpoint, protein-enzyme interactions are extremely demanding computationally, with ab initio molecular dynamics calculations easily consuming hundreds of thousands of CPU hours. But those reactions occur in the context of cells, and modeling the system across that range, including reactions, kinetics, permeation and microphysiology will ultimately be required to understand processes such as cell metabolism and drug delivery. Such mesoscale modeling will require vast resources, and it is not unique to biology.  It applies to most scientific domains.

HPCwire: Is HPC being used as aggressively as it should be in science?

Nystrom: Researchers using computational science today are obtaining excellent results and clearly demonstrating the role for HPC throughout science. However, we can do a better job of communicating to those who are not yet using HPC that hardware and software resources, together with expertise in using those resources, are available to help them. Also, there is an ongoing need for investment in scalable software and infrastructure. As we scaled our systems to thousands of processors, we met and overcame new challenges, and we'll have to do that again as we scale to petascale systems.

HPCwire: We often hear people talk about a shortage of people who have expertise in both their scientific discipline and computational science.  Do you see this as a problem?

Nystrom: Such individuals exist, although due to specialization in scientific domains and increasing sophistication of software, people who are proficient in both certainly aren't common. Supercomputing centers play a vital role in that respect, acting as a bridge between domain experts and the resources needed to address the science. This need will continue to evolve as systems scale to the petaflop regime, with significant challenges in software design and implementation.

HPCwire: What can we expect to see from PSC at SC05 and beyond?

Nystrom: PSC will present exciting work representing a variety of interests in applications, networking, biomed, and systems. We've seen great scientific results on Big Ben, and a number of users will be present to demo and present their work first-hand.

PSC is intimately involved in SC05 networking, including supporting the Open InfiniBand (OpenIB) network for SCinet. Our networking group will also make presentations and perform demonstrations on the NPAD (Network Path and Application Diagnostics) project, which is funded by the NSF's “Strategic Technologies for the Internet” Initiative and addresses problems of network path delay inherent in transmitting data across wide area networks. They'll also show the HPN-SSH, a high-performance secure shell, which eliminates a known ssh bottleneck by allowing the flow control buffers to be defined at runtime.

PSC's Biomedical Initiative will be showing a variety of applications, including MCell for modeling stochastic microphysiology, DReAMM for model building and visualization, the PSC Volume Browser for volumetric visualization and analysis of massive datasets, and the Dynamo molecular simulation program for hybrid quantum mechanical/molecular mechanics simulations. In coming years, PSC will develop new web gateways for each of these applications, and workshops by the biomed group will address spatially realistic cell modeling, volumetric data analysis and visualization, and bioinformatics, especially targeting minority-serving institutions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., is announcing a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascade Lake-AP) in t Read more…

By Tiffany Trader

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This