A Conversation with PSC’s Nick Nystrom

By Nicole Hemsoth

November 11, 2005

In this exclusive interview, HPCwire discussed recent HPC activities at the Pittsburgh Supercomputing Center with Nick Nystrom, PSC's director of strategic applications and a research physicist at Carnegie Mellon University.  PSC is an NSF center and one of the premier facilities for computational science in the U.S.

HPCwire: PSC historically has been the first, or one of the first, to receive new HPC systems that major vendors develop. From a scientist's standpoint, what are the advantages of gaining access to systems this early on?

Nystrom: Accessing more powerful capability-class systems allows scientists to increasingly address the problems they really want to solve, rather than simplifications. One can go to realistic resolution and model all relevant degrees of freedom. This translates into a better return on investment. R&D cost is high, so rapidly translating the investment required to develop a new system into results of scientific, economic, and national importance ideally leverages that investment.

HPCwire: Big Ben, the PSC's Cray XT3, went into production on October 1. Can you provide some examples of scientific breakthroughs made possible through that resource?

Nystrom: Actually, breakthroughs began well before production. In April 2005, PSC scientists Troy Wymore and Shawn Brown performed a series of path integral quantum mechanical/molecular mechanics runs to elucidate the molecular basis of two different metabolic diseases, Hyperprolinemia Type II and Sjogren-Larsson Syndrome.

More recently, Yang Wang, in collaboration with Oak Ridge National Laboratory and Florida Atlantic University, performed a record-breaking electronic structure calculation on an iron nanoparticle embedded in an iron-aluminum binary compound. This 16,000-atom calculation required 1,600 Cray XT3 processors using LSMS 2.0, which Yang recently extended to facilitate designing new materials with specific magnetic properties.

HPCwire: How does Big Ben fit as an NSF TeraGrid resource?

Nystrom: Big Ben is PSC's newest contribution to the TeraGrid. The XT3's SeaStar interconnect, which features very high bandwidth and which at PSC is configured as a 3D torus, is ideal for challenging simulations that require thousands of processors. However, that's not to say that it's restricted to standalone, tightly coupled applications. For example, Nathan Stone, in PSC's Advanced Systems group, developed a library to allow I/O over the SeaStar's low-level Portals communications protocol, which is now being used by Prof. Paul Woodward to interactively steer very large CFD calculations. Paul and other researchers at the University of Minnesota can initiate calculations on Big Ben, visualize in real time the results on their power wall, and adjust parameters of the calculation as it executes. This interactivity will greatly reduce the time to solution for important problems in turbulence.

HPCwire: How much impact do advances in HPC technology have on advances in science?  How direct is the relationship between the two?

Nystrom: The impact of HPC on science can be tremendous for a variety of reasons. Large-scale computations can probe phenomena that are observationally inaccessible or that would be prohibitively expensive. A nice example of that is work by the Quake group at Carnegie Mellon University. Their simulations of earthquakes in the Los Angeles basin require detailed knowledge of subsurface geology, which they infer through a computationally demanding inverse procedure. New end-to-end runs on the XT3, including everything from meshing through visualization, will allow a groundbreaking 2Hz simulation on over 10 billion elements. Going to those levels of resolution is necessary to obtain better predictions of ground motion, which in turn can guide construction planning and disaster preparedness.

Similarly, work performed by Prof. Klaus Schulten and Emad Tajkorshid of the University of Illinois on PSC's systems elucidated the passage of water, but not protons, through aquaporins, which are important membrane proteins. Their work complemented the experimental work for which Dr. Petre Agre received the 2003 Nobel prize in chemistry, and a visualization of their aquaporin simulation is available at the Nobel website.

HPCwire: I understand that LeMieux, PSC's big Alpha system, is still heavily utilized.  How are people taking to Big Ben, your new 10-teraflop Cray XT3?

Nystrom: Interest has been quite high. Prior to Big Ben going into production, a number of research groups participated as “friendly users”, gaining experience and porting their applications as we brought the system to readiness. Most of those have gone on to apply for production allocations, and others are transitioning from LeMieux.

Much of Big Ben's appeal is due to performance. Considering only clock speeds, Big Ben might be expected to be only 2.4 times as fast as LeMieux, processor-for-processor. But that doesn't take into account communications, which for many realistic applications are critically important. To illustrate that point, PSCC, a Parallelized Spectral Channel Code for simulating turbulent boundary layers, runs up to 10.5 times as fast on 512 XT3 processors as it does on 512 LeMieux processors. That improvement is due to the interconnect bandwidth.

HPCwire: What are some scientific problems or disciplines that will benefit most from sustained petaflop speed?

Nystrom: It's difficult to think of disciplines that would fail to benefit, given the desire to ask the hard questions and the resources to address them. Biophysics, engineering, materials science, ecology… Really, however, the greatest rewards will be obtained as simulations span disciplines and address ranges of scales. For example, from a molecular viewpoint, protein-enzyme interactions are extremely demanding computationally, with ab initio molecular dynamics calculations easily consuming hundreds of thousands of CPU hours. But those reactions occur in the context of cells, and modeling the system across that range, including reactions, kinetics, permeation and microphysiology will ultimately be required to understand processes such as cell metabolism and drug delivery. Such mesoscale modeling will require vast resources, and it is not unique to biology.  It applies to most scientific domains.

HPCwire: Is HPC being used as aggressively as it should be in science?

Nystrom: Researchers using computational science today are obtaining excellent results and clearly demonstrating the role for HPC throughout science. However, we can do a better job of communicating to those who are not yet using HPC that hardware and software resources, together with expertise in using those resources, are available to help them. Also, there is an ongoing need for investment in scalable software and infrastructure. As we scaled our systems to thousands of processors, we met and overcame new challenges, and we'll have to do that again as we scale to petascale systems.

HPCwire: We often hear people talk about a shortage of people who have expertise in both their scientific discipline and computational science.  Do you see this as a problem?

Nystrom: Such individuals exist, although due to specialization in scientific domains and increasing sophistication of software, people who are proficient in both certainly aren't common. Supercomputing centers play a vital role in that respect, acting as a bridge between domain experts and the resources needed to address the science. This need will continue to evolve as systems scale to the petaflop regime, with significant challenges in software design and implementation.

HPCwire: What can we expect to see from PSC at SC05 and beyond?

Nystrom: PSC will present exciting work representing a variety of interests in applications, networking, biomed, and systems. We've seen great scientific results on Big Ben, and a number of users will be present to demo and present their work first-hand.

PSC is intimately involved in SC05 networking, including supporting the Open InfiniBand (OpenIB) network for SCinet. Our networking group will also make presentations and perform demonstrations on the NPAD (Network Path and Application Diagnostics) project, which is funded by the NSF's “Strategic Technologies for the Internet” Initiative and addresses problems of network path delay inherent in transmitting data across wide area networks. They'll also show the HPN-SSH, a high-performance secure shell, which eliminates a known ssh bottleneck by allowing the flow control buffers to be defined at runtime.

PSC's Biomedical Initiative will be showing a variety of applications, including MCell for modeling stochastic microphysiology, DReAMM for model building and visualization, the PSC Volume Browser for volumetric visualization and analysis of massive datasets, and the Dynamo molecular simulation program for hybrid quantum mechanical/molecular mechanics simulations. In coming years, PSC will develop new web gateways for each of these applications, and workshops by the biomed group will address spatially realistic cell modeling, volumetric data analysis and visualization, and bioinformatics, especially targeting minority-serving institutions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire