The Elusive Neutrino – New Window on the Violent Universe

By By Paul Tooby

November 11, 2005

Scientists have long sought ways to map the Universe and explore its most violent phenomena, from mysterious gamma ray bursts and supernova to the black holes that inhabit active nuclei in the centers of galaxies. In their quest, some researchers are now focusing on subatomic particles called neutrinos, which show promise of being valuable messengers. In contrast to other particles or light, which are absorbed, bent, or scattered in their travels, the tiny, almost massless neutrino is able to travel virtually unimpeded across the vast distances of space to reach the Earth. Aided by the TeraGrid network, cluster, and massive data resources at SDSC at UC San Diego, physicists are developing a new kind of telescope, AMANDA-II, the Antarctic Muon and Neutrino Detector Array, to observe these neutrinos and decipher their tales about the location and inner workings of the cataclysmic events in which they originated.

Researcher Andrea Silvestri and Professor Steven Barwick of the Physics and Astronomy Department at the University of California, Irvine (UCI), along with many other scientists, are beginning to use the multipurpose AMANDA-II high-energy neutrino telescope at the South Pole to seek answers to a broad array of questions in physics and astrophysics. Observing neutrinos can shed light on fundamental problems such as the origins of cosmic rays, the search for dark matter and other exotic particles, as well as serving as a monitor for supernovas in the Milky Way.

However, the same qualities that let neutrinos travel freely across the universe also make them extremely difficult to detect. To further complicate matters, the vast majority of neutrinos that reach the Earth are produced nearby through cosmic ray collisions in the Earth's atmosphere, potentially masking the rarer, distant-origin neutrinos the scientists are seeking. How can particle astrophysicists Silvestri and Barwick filter out the mass of unwanted information from their data and tease out the tiny signal of high-energy neutrinos from far away?

Taming a Flood of Data

Scientists have steadily increased the size and effectiveness of the AMANDA telescope since it began collecting data in 1997. In AMANDA-II, the data acquisition electronics were upgraded with Transient Waveform Recorders that capture the complete waveform for each event detected. The researchers expect that several important goals will benefit by as much as a factor of 10 from the additional information gathered, including improvements in reconstructing muon cascades, the search for diffuse sources of ultra-high energy neutrinos, and the search for neutrino point sources.

However, with this progress in gathering data come new challenges, and the telescope now produces a flood of information, growing from one terabyte to 15 terabytes per year even in compressed form—about the same amount of information as in the entire printed collection of the Library of Congress or the data on 3,500 DVDs.

To analyze this immense data collection, Silvestri and Barwick turned to the large-scale data and computing capabilities of the NSF TeraGrid facility at SDSC. “The more capable the AMANDA telescope becomes, the more information we gather about neutrinos, which greatly helps our science,” said Silvestri. “But this also means that to analyze all this data, we need the expertise and high-end resources of SDSC and the TeraGrid.”

The first step was to transfer the 15 terabytes of raw AMANDA neutrino data over a high-speed network from UCI into a Storage Resource Broker (SRB) data archive at SDSC. Having developed the advanced SDSC SRB data management tool and installed more than one petabyte of online disk and more than six petabytes of archival storage capacity, SDSC is ideally suited to house and analyze massive data sets. And as the TeraGrid was designed to do, the high-speed network allowed the researchers to transparently access their massive data archive housed at SDSC for use on TeraGrid computational resources at various sites, speeding their research.
Finding a Neutrino in a Haystack

The 15 terabytes of the full AMANDA-II waveform data collected for one year during 2003 contains some two billion experimental events, and the challenge the scientists faced was to identify the few neutrinos among the millions of times greater number of background muon events. Scientists measure neutrinos by detecting muons, which are subatomic particles produced in the rare interaction of a neutrino with other matter.

In their analysis, the researchers processed and filtered the experimental data and reconstructed each individual event. By running sophisticated algorithms on the TeraGrid through numerous iterations using likelihood-based statistical methods, the researchers analyzed the full 15 terabytes of experimental data. This process was highly data and compute-intensive, and only by having access to the resources of the massive SDSC online disk and tape storage and some 70,000 CPU hours on the TeraGrid supercomputer were the researchers able to carry out their data analysis. Typical jobs ran on 512 processors using 1 to 2 gigabytes of memory.

Finally, the researchers succeeded in distinguishing the faint signal of 1,112 atmospheric neutrinos from the billions of extraneous events. When they compared their results to standard analyses they found good agreement, confirming that the AMANDA instrument and SDSC-aided data analysis can produce the same physics results as previous data. In particular, the angular distribution of the atmospheric neutrino sample extracted from the standard data set agreed well with the new AMANDA data, with all 1,112 neutrinos originating in the northern hemisphere and distributed across the sky in a fairly uniform way, as expected.

In validating the AMANDA instrument and analysis, the researchers also investigated whether the observed neutrinos were generated from collisions with the Earth's atmosphere, which produces a uniform spatial distribution of neutrino events across the sky, or whether some of the neutrinos were created by a source of extraterrestrial origin, which would be expected to produce a more concentrated event cluster in the direction of the source. Their statistical analysis of the data showed that the observed regions of the sky were compatible with atmospheric neutrino events, without significant event clusters that might indicate an extraterrestrial source.

The scientists explained that it has been an enormous undertaking, requiring many years and the efforts of diverse groups and specialities working together to develop and validate an entirely new kind of telescope such as AMANDA. “This is a major result for the AMANDA-II neutrino telescope and broader research community,” said Silvestri. “It's the first validation that we can in fact perform valid neutrino analysis with the new generation of instrument, its much larger data stream, and all the steps of our analysis, and we couldn't have done it without SDSC and the TeraGrid data and compute resources.”

Moreover, since their initial analysis used only part of the complete information contained in the AMANDA-II waveform data, the researchers are now developing new software tools to exploit the full information available. The scientists expect the additional information to improve their ability to resolve even smaller differences in energy and angle. This will be crucial in their continuing search for the hard-to-detect energetic extra-terrestrial neutrinos that may hold the answers to many fundamental questions about the Universe.

A New Kind of Telescope

The fulfillment of a 40-year dream, AMANDA was designed to overcome the obstacles to detecting elusive neutrinos, and shows promise of giving scientists a startlingly broader view the Universe through the window of these high-energy particles. AMANDA is an ingenious new kind of “telescope” that senses neutrinos instead of light from above as have all telescopes since the time of Galileo (see sidebar). And unlike normal telescopes, which always face upward, AMANDA can also look downward, using the size of the Earth to “filter out” the extraneous downward-moving atmospheric muons, which are about a million times more abundant, and in this way detect high-energy neutrinos in the intermediate range from distant parts of the Universe. Only such neutrinos are able to pass through the whole Earth after entering in the Northern Hemisphere to reach the AMANDA telescope at the South Pole.

Occasionally, one of these upward-moving high-energy neutrinos will interact with an oxygen atom in the ice near the AMANDA array to produce a cascade of light-emitting muon particles. This light can travel long distances through the clear ice at the South Pole, which is free of competing background light, until it is picked up by the sensitive AMANDA photodetectors that gather this indirect evidence of the passage of a neutrino. The telescope can also search for even more energetic neutrinos by looking for downward-moving neutrinos of ultra-high energies.

The AMANDA neutrino telescope continues to grow in power, and currently consists of some 700 photon detectors arranged like beads on vertical strings, lowered into 19 holes in the ice at the South Pole. The holes are distributed across a circular area, creating a cylindrical volume of ice that serves as the detector, some 120 meters in diameter and 500 meters tall, with its top about 1,500 meters below the ice cap's surface. Each photon detector module consists of a photomultiplier tube housed in a tough, pressure-resistant hollow sphere, with electrical and optical connectors attached. After a hole is bored in the ice with heated water, the string of detector modules is lowered into the water-filled hole, which then freezes solid, locking the detectors permanently in place.

In the future, the research will be scaled up even further in the NSF IceCube project, a much larger one-kilometer cube telescope array that will produce 20 times as much data, one terabyte per day or some 300 terabytes annually. Silvestri points out that “this will drive the need for even larger data, computational, and network resources at SDSC to better answer questions about the most energetic events in the history of the Universe.”

References:
A. Silvestri et al, Performance of AMANDA-II using data from Transient Waveform Recorders, Proceedings of 29th International Cosmic Ray Conference, Pune, India August 3-10, 2005.
A. Silvestri et al, The AMANDA Neutrino Telescope, Proceedings of International School of Cosmic Ray Astrophysics. Erice, Italy July 2-13, 2004.

Related Links:
Antarctic Muon and Neutrino Detector Array (AMANDA) –
http://amanda.uci.edu/
Andrea Silvestri – http://www.ps.uci.edu/~silvestri
Steven Barwick – http://www.ps.uci.edu/physics/barwick.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes (March 2017)

March 1, 2017

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Intel Sets High Bar with Workforce Diversity Program Results

February 28, 2017

Intel’s impressive efforts to achieve workforce diversity and compensation equality edged up yet another notch last year according to the company’s 2016 Diversity and Inclusion Report released today. Read more…

By John Russell

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This