Moving Computational Sciences Forward at PNNL

By Lisa Teske

December 9, 2005

Being the new editor for Pacific Northwest National Laboratory's magazine, I was a little apprehensive about meeting the force behind the Laboratory's newest research directorate. But within minutes, Associate Laboratory Director Dr. George Michaels put all concerns to rest as he laid out his vision for the Computational and Information Sciences Directorate (CISD), PNNL's fastest growing research directorate.

In a matter of hours, it became clear why George, as he prefers to be called, is considered a visionary in his field. As I dug into his background, I found that his youthful interests in electrical engineering hinted at the early makings of a computer engineer. However, graduate studies in biochemistry and molecular biology took him down another path. The years that followed engaged George in the fundamental sciences, which allowed him to test an emerging research technique—relying on computers as a primary tool of scientific discovery.

Much of his career has focused on computational analysis and applying statistical models for fundamental science research. Coincidentally or not, that is PNNL's approach. Every day, researchers push the boundaries on scientific understanding with the strength of high-performance and data-intensive computers behind them. As CISD's leader, George Michaels is leading the charge to provide the best-in-class tools for the next generation of discovery.

Teske: Why did PNNL establish the Computational and Information Sciences Directorate?

Michaels: PNNL has had pockets of expertise in this area scattered across the Laboratory for years. With CISD, we centralized our expertise and created a critical mass in a variety of areas. This approach allows PNNL to advance the sciences using computation as a tool to better serve the Department of Energy, the Department of Homeland Security (DHS) and other clients.

The team delivering this capability is impressive on several levels. First, the staff has achieved a high level of art in practicing teamwork. The other thing about this group is that it is driven to impact the big picture. Many members are key national figures. They lead initiatives for the government at the lab system-wide level and, of course, within PNNL. We have experts in homeland security, materials science and engineering, mathematics, and information technology and infrastructure. I could spend hours talking about the talent in this group. For the kind of diverse projects we do at PNNL, it is essential to have world-class multidisciplinary contributors as part of the mix. And we do.

Teske: What is unique about PNNL's work in this area?
 
Michaels: What sets PNNL apart is that everything we do focuses on taking science to solutions. Whatever mission we apply it to—national security, environmental technologies, energy sciences—computation is an integral piece of delivering science-based solutions. It has become the foundation upon which the other mission areas build and advance their work.

With the current national challenge of data-intensive computing, we have refocused our computational expertise there. The fact is that the nation has spent a lot of time generating a lot of data. One of the fundamental problems with preventing 9/11 had to do with the fact that we had data scattered across multiple agencies. We didn't have the tools to bring it all together. Bringing large data sets together for analysis requires a different computing approach; it requires tools that transform data into information that gives us knowledge we can use. At PNNL we are focused on data-intensive computing—it's one of our central activities.

Teske: How is computation directly affecting PNNL's initiatives?
 
Michaels: One of the ways we are making a difference is in the area of information analytics. PNNL excels in developing sensors and collecting data. Computational sciences provide the tools that allow us to understand that data in real time; we use high-performance computing and data-intensive computing to do it. So whether we are looking at climate change scenarios or cloud physics or doing threat and vulnerability analysis for DHS, we provide the tools that allow that important work to move ahead.

We also contribute substantially to the Lab's emerging strengths in predictive biology and energy sciences, nanoscience, and energy conversions, all which are central to much of the work going on in the fundamental sciences and the environmental technology groups. There is an overlap in the analytics methodologies developed for bioinformatics with those used for national security and homeland security analytics. So what we are doing is very synergistic across the board.

Teske: What was accomplished in the first year?

Michaels: Strategy. We sought to answer the questions: “How are we going to be a world-class computational sciences contributor? What do we need to do to deliver the big picture—for PNNL's mission?”

One of the early challenges of starting a new directorate was identifying who needed to be a part of it. We pulled together folks from several research areas—Fundamental Science, National Security, Energy Sciences and Technology—to create this group. We started out with about 420 people, and we've hired 50+ more since October 2004.

An exciting development this year is winning a large DOE grant for a new multiscale mathematics program. Our plan is to take mathematics to a level where it can help researchers break through barriers in understanding complex physical processes involving extremely long scales of time or distance. It has potential applications in fuel cell research, efficient engine design, and design of materials atom by atom.

Teske: So now you have a strong team in place and a clear mission. What's next?
 
Michaels: The big challenge I have put to the team is to double our business volume by 2009. That means we must initiate a variety of new programs and take on a larger client base while maintaining our high level of service. An example of that growing volume and diversity is the recent $3 million project awarded to us by the National Institutes for Health for computational biology work. We are modeling protein properties and particular bacteria that are problematic for folks who have cystic fibrosis.

I also foresee that we will lead the charge into the petascale computing arena. Currently, we're in the terabyte scale. The Environmental Molecular Sciences Laboratory (EMSL) supercomputer has 11.8 teraflops of performance. By 2009, I think supercomputers will be 10,000 times more powerful and be able to address very large, data-intensive work.

With that capability, I see us advancing information-based science, which will revolutionize how scientific research is done. From a computing standpoint, technology currently cannot manage the large-scale and data-intensive enterprises. That means we will have to address the need for new approaches in computing, databases, and knowledge discovery, which is what we're doing right now. Information-based sciences will allow researchers to holistically address very complex problems.

Teske: How do partnerships play into the team's success?

Michaels: We broadly partner with government and industry entities. Partnerships are synergistic because no single entity has all of the expertise to cover every mission area. It makes sense to partner across the lab system because we have common funding and management functions.

For example, we worked with Hewlett-Packard to develop what was the fastest computer in DOE's Office of Science for about three years. We haven't really done much to that machine since and yet it is still among the 20 fastest in the world. We're working on upgrading it through other partnerships so that we can increase its power and applicability to bigger science challenges undertaken by EMSL.

We partner extensively with other national laboratories. Right now, we're working with two laboratories in the Office of Science network to define the needs for the next generation of bandwidth and the most effective use of it.

So partnerships are very useful. I think the joint ownership of our collaborations motivates every partner to own the problem and to work effectively towards an integrated solution.

Teske: What is it about leading the Lab's CISD business that motivates you?

Michaels: Good question. The truth about me is that I really like taking on new challenges. I'm something of a risk taker—in terms of going in new directions. So this new direction of data-intensive computing motivates me to make a significant contribution. Another factor is the talented people here; they work well together and like working together. One of my career mantras has been that work needs to be focused and fun. If not, there are plenty of other things to do. The fact is that we are enjoying our work. In taking on new things, we are making a difference in the scientific community…and the world. That's what drives me and the directorate.

This article originally appeared in the Fall 2005 issue of Breakthroughs Magazine, a publication of Pacific Northwest National Laboratory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This