Taming the Whirlwind

By Tim Palucka

December 9, 2005

“We’re experiencing a little turbulence, folks,” the pilot says, as the plane plummets fifty feet like a car in a funhouse ride. White knuckles, churning stomach – on an airplane, a word you’d prefer not to hear is turbulence.

As P. K. Yeung is quick to tell you, however, turbulence is often beneficial and modern air travel couldn’t exist without it. “But for the turbulent mixing of fuel and air in a jet engine, jet flight wouldn’t be possible,” says Yeung, a professor of aerospace engineering at Georgia Tech. He has applied his deep knowledge of turbulence to carry out some of the largest computational studies of this widespread and important phenomenon, and his recent work at PSC, using 2,048 processors of LeMieux, PSC’s terascale system, sets a new milestone for large-scale turbulence simulation.

Part of our lives in many ways – from the cream we stir in our coffee to thunderstorms that ruin a night at the ballgame – turbulence defies easy definition, but is, roughly, a state of fluid flow in which the velocities at any point fluctuate randomly.

But for these random fluctuations, many important industrial chemical reactions would happen very slowly or not at all. On a larger scale, turbulent mixing in the lower atmosphere coupled with phenomena at high altitudes has a great effect on weather in the short term and climate in the long term. Turbulent mixing in ocean currents, such as the Gulf Stream, spanning thousands of miles helps to maintain the heat balance and ecology of the oceans.

Better understanding of turbulence, especially since the advent of supercomputers, has led to improvements in how we live, including better airplane wings, which lower the fuel-cost of air travel, and better artificial heart valves, which save lives. But it’s an extremely complex phenomenon – one that Nobel Prize-winning physicist Richard Feynman once referred to as the “last unsolved problem in physics” – and many challenges remain.

One of the more pressing turbulence-related issues, says Yeung, is in preserving environmental quality. Where, for instance, will particles of pollutants from a smokestack end up minutes, hours, and days from now? “In order to maintain air quality, we need to understand the behavior of smoke emanating from pollution sources. Almost always the flow out of a chimney will be turbulent. We can see that in the sky – the smoke follows an irregular path – and we want to be able to describe the motion of those pieces of fluid, which constitute that cloud. If a certain part of that fluid has been contaminated, we want to know where it goes.”

Using a powerful method, called “direct numerical simulation,” with the advanced parallel-processing capability of LeMieux, Yeung produced results that are a significant step toward this goal.

Tracking the Particles

A major challenge in simulating turbulence is that the random fluctuations – the eddies and vortices – occur over a very wide range of scales, all of which must be taken into account in a realistic model. In the atmosphere, for instance, the swirls and eddies of air that make up the overall flow vary from several centimeters in diameter to thousands of kilometers, with every size in between. The ratio of scales can be in the thousands, with the number of variables – and thus the amount of computing required to keep track of them – increasing rapidly as the ratio increases. This imposes a daunting computational demand.

Yeung tackles this problem directly. Direct numerical simulation (DNS), starts with the fundamental equations of fluid flow and calculates speed and direction for each fluid particle. “Direct” means that velocities are calculated at each time step as the flow progresses, without reliance on experimental data to supply parameters. DNS tracks each particle – such as the particles in a plume of smoke – as it moves step-by-step within a high-resolution grid.

“We are acting as if we could measure the velocity everywhere in space and over a sustained period of time,” Yeung explains. “With DNS, we are able to follow the irregular pathways or trajectories of fluid elements exiting a localized contaminant source.”

Visualize a plume of smoke rising from a smokestack three feet in diameter. Any two smoke particles are separated by three feet, at most, as they exit the stack. DNS allows you to address the issue of how far apart these two particles will be after they wander about in the atmosphere for a sustained period of time. Do they separate or come together over time? To do this experimentally, to identify and keep track of a single pair of fluid particles, let alone all the particles in a large cloud, would be impossible. DNS – Yeung points out – provides more data, more accurately, than is possible to gather experimentally.

Scientists quantify the degree of turbulence in a fluid flow by the Reynolds number. Higher Reynolds numbers correspond to a wider spread in the range of eddy sizes, equivalent to higher levels of turbulence. Scientists have long been interested in simulating high Reynolds number flows, but have been limited by computing power. “The availability of computers like LeMieux allows us to increase the Reynolds number by expanding the number grid points,” says Yeung, “and this allows us to simulate a wider range of scales.”

A Turbulence Database and the Kolmogorov Constant

Over the past year, Yeung employed 2,048 LeMieux processors simultaneously solving the fundamental fluid equations in a three-dimensional grid with eight-billion grid points. This is the largest DNS ever done that tracks the path of particles over time. To get started on LeMieux required importing his software to a system where it hadn’t run before, a major challenge. “We’ve had very capable and dedicated assistance from PSC consulting.”

LeMieux’s ability to communicate efficiently among processors has been an important factor in Yeung’s ability to carry out his large-scale DNS work. His software efficiently exploits LeMieux, using thousands of processors with minimal added communication time involved in adding processors – a major advantage for his work.

With more than a million processor-hours of LeMieux time, Yeung’s simulations produced terabytes of data that yield the highest Reynolds number ever calculated with the DNS approach. Previously, researchers had to extrapolate data from low turbulence simulations if they wanted to apply it in high turbulence situations, which led to uncertainties. “We will now be approaching the Reynolds numbers typical in applications more closely,” says Yeung, “and if we still have to extrapolate we can do so with much greater confidence.”

Beyond his immediate goal of understanding pollutant dispersion for environmental purposes, Yeung’s simulations create a valuable database – which can be made available at PSC to the wider community of turbulence scientists, who can use it to test their turbulence models. Because of the fundamental nature of his DNS simulations – free of assumptions derived from observation – the data is useful for turbulent flows in many different applications. For pollutant dispersion, such as a smoke plume, from a localized source, other researchers can compare their model results with Yeung’s DNS data for a similar Reynolds number. “Using DNS we can obtain the fundamental data that would allow us to formulate those models more carefully,” says Yeung, “and eventually to evaluate the performance of the model and suggest improvements.”

In extending his DNS studies to higher Reynolds numbers, Yeung also is getting closer to pinpointing an elusive number called the Lagrangian Kolmogorov constant. In 1941, Russian mathematician A.N. Kolmogorov posited that at high enough Reynolds number small-scale features of turbulence are independent of the large-scale flow geometry. This theory has been widely influential in turbulence research. “The Kolmogorov constant is of great interest because of the supposition that it is universal,” says Yeung, “being the same for turbulent flows of various types of geometry as long as the Reynolds number is sufficiently high.”

In the laboratory, with data from fixed measurement locations, it is straightforward to apply Kolmogorov’s hypotheses, and this version of the constant is well established. Models of pollutant transport, however, use what’s called a Lagrangian reference frame, which mimics an observer moving with the fluid flow – like a weather balloon that drifts with the wind. Research by Yeung and others has indicated that it takes very high Reynolds numbers simulations to establish this version of the constant. “This constant is very important to modeling,” says Yeung. “Our group’s large simulations on LeMieux have given quite clear evidence that the value is approaching a constant as the Reynolds numbers increases without limit.”
 
For more information, including graphics, visit http://www.psc.edu/science/2005/yeung/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire