The Future of Custom HPC Application Development

By Ilya Mirman

December 9, 2005

Expanding role of high-performance computing

As Moore's law has stalled on the desktop, scientists and engineers in virtually every field are turning to high-performance computing to solve some of today's most important and complex problems. With simulation increasingly replacing physical testing, more complex phenomena being modeled, and whole products or systems being simulated, technical computing — whether in the life sciences, manufacturing, energy, intelligence, defense, or earth sciences — has become both more prominent and more challenging.

In some ways, the industry is at a cross-road. An increasing number of problems demand parallel computing power, and high-performance computers are becoming remarkably more powerful, and affordable. But the “software gap,” the gap between hardware capabilities and actual benefits we can practically extract through programming, is wide and growing. There is a dearth of applications available for parallel computers, and custom development of parallel applications is fundamentally flawed. This article will summarize the state of the industry today, predict how the industry may evolve over the next couple of years, and present some choices available for engineers, scientists, and analysts trying to maximize the return on their HPC investments.

Two distinct computing environments

Today, there are two distinct environments for technical computing: the desktop, and the high-performance computer. Both environments have much to offer, but the growing disconnect between them presents a substantial challenge, one that must be overcome if the power of today's and tomorrow's parallel computers is to be harnessed.

The launch of the Windows 95 operating system ushered in the era of the desktop computer as the primary science and engineering computing vehicle, particularly during the early stages of new product or system modeling, simulation, and optimization. The interactivity offered by these tools lends themselves well to the iterative process of research and discovery.

Today, millions of engineers and scientists have access to a rich set of interactive high-level software applications that, broadly speaking, fall into one of two categories: 1) very high level languages (VHLLs) for custom application development, such as MATLAB, Mathematica, Maple, Python, or IDL, and 2) vertical applications developed by commercial independent software vendors, such as SolidWorks for computer-aided design or Ansys for finite-element analysis.

The desktop tools offer an easy way to manipulate high-level objects (e.g., matrices with MATLAB, or parameter-driven geometric features in SolidWorks), hiding many of the underlying low-level programming complexities from the user. Furthermore, the desktop tools provide an interactive development and execution environment, the usage mode needed for productivity in science and engineering.

Things are very different in the HPC world. To begin with, there are relatively few commercially-available software applications for high-performance computers — less than 5 percent of the desktop science and engineering applications run on the parallel architectures of high-performance computers. Given the difficulty associated with parallel programming, and the migration of technical computing to the engineer's desktop over the last decade, the business model for commercial ISVs to develop HPC applications is tenuous at best.

As a result of the limited application availability, and compounded by the specialized nature of the models and algorithms, a great deal of technical applications for parallel computers are custom-developed by the end users. The specification is typically some combination of a prototype program written in a desktop-based high-level application (MATLAB, etc.), and “prose” that attempts to capture the particular model, system, or algorithm. A parallel programming specialist then writes the application in C, Fortran, and MPI (message passing interface) used for inter-processor communication and synchronization – relatively complex low-level programming. Only after the application is developed for the high-performance computer can it be executed to allow testing and scaling with the real data.

This process is fundamentally flawed: it is slow, expensive, inflexible, and remarkably error-prone. First, the specialist — of which there is a serious shortage, and they are expensive — must correctly interpret the end user's specification. Second, the end user must then interpret the test results to understand whether problems encountered are due to his specification, or the specialist's code.

Because each of these steps can be several months, scientists and engineers are limited to how much iteration to the algorithms and models they can make. And remember — this all happens before they ever get to actual usage of their models, solving the problems they have set out to solve. More than 75 percent of the “time to solution” is spent programming the models for use on high-performance computers, rather than developing and refining them up front, or using them in production to make decisions and discoveries.

The need for interactivity

Even after the algorithm or model has been reprogrammed for a parallel computer, we are not out of the woods, because today the resulting usage mode is strictly batch-oriented, rather than interactive. Given how long typical runs take — hours, days, or even weeks — the iteration and refinement of the algorithm or model is severely limited. In many cases, the correct algorithm, approach, or key to the problem, may not be known up front, and may typically be discovered only by running the code on the HPC, with the actual input data. And it is highly likely that a change in the user's specification — due to errors, changed algorithms, changed application requirements, or changed hardware — will cause a major rewrite by the specialist.

When reducing time-to-solution is the goal, it is the engineers' and scientists' time that is typically the precious resource, not computing cycles. During the model/algorithm development phase, interactivity is critical. Yet although interactive use can be taken for granted with desktop science and engineering tools, to date it has simply not been available in high-performance computing, which remains firmly in the batch world.

Solving the application problem

What does the ideal solution for custom HPC application development look like? It must enable scientists and engineers to write applications in their favorite very high-level languages (VHLLs) on desktops, and have them automatically parallelized and able to run interactively on high-performance computers. In other words, let the end users continue to work in their preferred environments (“no change in religion”), hide from them parallel programming challenges, and let them more easily access the parallel computing power of high-performance computers. They can prototype and scale in a tightly coupled process, in real time, with fine-grained control of both algorithms and data, transparently harnessing the HPC's computing resources.

With this approach, you could write just enough of the application in a VHLL to start testing with real data, as you incrementally refine the application. In other words, with an interactive workflow, the time to “first calculation” (or, in a sense, “partial satisfaction”) can be within minutes, rather than the several months or years required to first program the parallel application. Interactive usage would allow you to observe the application run, stop it, change parameters, change what is observed, and (possibly) decide to further refine the application. Such a process with incremental refinement and continuous testing is key to modern high productivity software development methodology — learning happens only through feedback.

There is some early evidence that the industry is gravitating to such an approach. In the last several months, several VHLL software vendors have entered the market with parallel solutions that bridge desktops and high-performance computers, and the growing choice and competition is ultimately good news for end users. Needless to say, there isn't one silver bullet, one right choice for every situation, and ultimately users will vote with their wallets. Following are four predictions as to what the landscape will look like 3-4 years out:

1. There will be much less C, Fortran, and MPI coding by parallel programming specialists;

2. VHLL-specific workgroup environments — such as Distributed Computing Toolbox from The MathWorks — will do well for algorithms that naturally lend themselves to being partitioned into independent tasks (sometimes known as coarse-grained or “embarrassingly parallel”), and for teams where a single software tool (e.g., MATLAB) is the preferred technical computing environment;

3. There will emerge the notion of an interactive parallel computing platform, software that automatically and transparently links high-performance computers with many popular desktop tools. Such a platform will likely get the most traction in particularly large and complex problems requiring both fine- and coarse-grained parallelism, and in heterogeneous environments where multiple VHLLs are deployed and flexibility is key. There are several research projects underway in this area, and Star-P from Interactive Supercomputing is the first commercial product in this category.

4. Some efforts — at Sun, IBM, and elsewhere — are currently underway to develop a new computer language that may simplify programming of parallel computers. The focus of this effort is the programming of petascale-class computers, around the 2010 time frame. How broadly they are adopted will likely be inversely proportional to how “new” the new language would be in terms of usage constructs.

Once programming barriers are lowered, it is expected that many more scientists and engineers will experience parallel computing for the first time; development of custom HPC codes will take weeks or months, instead of months or years, and high-performance computers will be used just as interactively as our desktop PCs are today.

—– 

About the Author

Ilya Mirman is Vice President of Marketing at Interactive Supercomputing (ISC). Prior to joining ISC, Ilya was Vice President of Marketing at SolidWorks, a provider of mechanical design software. In this role, Ilya helped establish SolidWorks as the standard in 3D mechanical design software, used by hundreds of thousands of engineers worldwide. Prior to that, he led the product development team at Corning-Lasertron to introduce a new line of high-speed laser transmitters for the telecom industry. Ilya holds a BSME from the University of Massachusetts, an MSME from Stanford University, and an MBA from MIT's Sloan School. For more information about Interactive Supercomputing visit www.interactivesupercomputing.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

House Bill Seeks Study on Quantum Computing, Identifying Benefits, Supply Chain Risks

May 27, 2020

New legislation under consideration (H.R.6919, Advancing Quantum Computing Act) requests that the Secretary of Commerce conduct a comprehensive study on quantum computing to assess the benefits of the technology for Amer Read more…

By Tiffany Trader

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to have bipartisan support, calls for giving NSF $100 billion Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers in Neuroscience this month present IBM work using a mixed-si Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even in the U.S. (which has a reasonably fast average broadband Read more…

By Oliver Peckham

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

It is with great sadness that we announce the death of Rich Brueckner. His passing is an unexpected and enormous blow to both his family and our HPC family. Rich was born in Milwaukee, Wisconsin on April 12, 1962. His Read more…

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This