Built for Speed,

By Ann Parker

December 16, 2005

While computer gamers are eagerly awaiting the next generation of platforms, the computer scientists of Lawrence Livermore's Graphics Architectures for Intelligence Applications (GAIA) project are tracking the rapidly changing technology, but for a different reason. A team, led by John Johnson of the Computation Directorate, is researching graphics processing units (GPUs)—the highly specialized, low-cost, rendering engines at the heart of the gaming industry—to determine how they might be programmed and used in applications other than virtual entertainment.

“Graphics processors are accelerating in performance much faster than other microprocessors,” says Sheila Vaidya, project leader for GAIA. “We have an opportunity to ride the wave of innovations driving the gaming industry.” These processors — traditionally designed for fast rendering of visual simulations, virtual reality, and computer gaming — could provide efficient solutions to some of the most challenging computing needs facing the intelligence and military communities. Real-time data-processing capabilities are needed for applications ranging from text and speech processing to image analysis for automated targeting and tracking.

Gaming the System

The GAIA team, including collaborators from Stanford University, the University of California at Berkeley and Davis, and Mississippi State University, is researching graphics processors used in the computer gaming and entertainment industries to determine how they might be used in knowledge-discovery applications of relevance to national security.

Why bother with this class of processors when plenty of central processing units (CPUs) exist to do the heavy-duty work in high-performance computing? Two words: speed and cost.

The ever-growing appetite in the three-dimensional (3D) interactive gaming community has led to the development and enhancement of GPUs at a rate faster than the performance of conventional microprocessors predicted by Moore's Law. This acceleration in improved performance will likely continue as long as the demand exists and integrated-circuit technologies continue to scale.

During the past 2 years, the GAIA team has implemented many algorithms on current-generation CPUs and GPUs to compare their performance. The benchmarks that followed showed amazing performance gains of one to two orders of magnitude on GPUs for a variety of applications, such as georegistration, hyperspectral imaging, speech recognition, image processing, bioinformatics, and seismic exploration.
 
GPUs have a number of features that make them attractive for both image- and data-processing applications. For example, they are designed to exploit the highly parallel nature of graphics-rendering algorithms, and they efficiently use the hundreds of processing units available on-chip for parallel computing. Thus, one operation can be simultaneously performed on multiple data sets in an architecture known as single-instruction, multiple data (SIMD), providing extremely high-performance arithmetic capabilities for specific classes of applications. Current high-end GPU chips can handle up to 24 pipelines of data per chip and perform hundreds of billions of operations per second.
 
Today's commercial GPUs are relatively inexpensive as well. “National retailers charge a few hundred dollars for one, compared to the thousands of dollars or more that a custom-built coprocessor might cost,” says Johnson.

The performance of these GPUs is impressive when compared with that of even the newest CPUs. “A modern CPU performs about 25 billion floating-point operations per second,” says Johnson. “Whereas a leading-edge GPU, such as the NVIDIA GeForce 7800 GTX video card or the upcoming successor to the ATI Radeon X850, performs six times faster at half the cost of a CPU.” These GPUs are optimized for calculating the floating-point arithmetic associated with 3D graphics and for performing large numbers of operations simultaneously.

GPUs also feature a high on-chip memory bandwidth, that is, a large data-carrying capacity, and have begun to support more advanced instructions used in general-purpose computing. When combined with conventional CPUs and some artful programming, these devices could be used for a variety of high-throughput applications.

“GPUs work well on problems that can be broken down into many small, independent tasks,” explains GAIA team member Dave Bremer. Each task in the problem is matched with a pixel in an output image. A short program is loaded into the GPU, which is executed once for every pixel drawn, and the results from each execution are stored in an image. As the image is being drawn, many tasks are being executed simultaneously through the GPU's numerous pipelines. Finally, the results of the problem are copied back to an adjacent CPU.

However, general-purpose programming on GPUs still poses significant challenges. Because the tasks performed on a GPU occur in an order that is not controlled by a programmer, no one task can depend on the results of a previous one, and tasks cannot write to the same memory. Consequently, image convolution operations work extremely well (100 times faster) because output pixels are computed independently, but computing a global sum becomes very complex because there is no shared memory. “Data must be copied in and out of the GPU over a relatively slow transmission path,” says GAIA team member Jeremy Meredith. “As a result, memory-intensive computations that require arbitrary access to large amounts of memory off-chip are not well suited to the GPU architecture.”

Today's GPUs are power hungry. But designers, faced with the growing demand for mobile computing, are rapidly evolving chip architectures to develop low-power versions that will approach the performance of high-end workstations.

What's in the Pipeline

“GPUs are beginning to more closely resemble CPUs with every evolution,” notes Johnson. “The drawbacks for general-purpose programming are being tackled by the industry, one by one.” Next-generation CPU architectures are adopting many features from GPUs. “Emerging architectural designs such as those found in Stanford's Merrimac and the IBM-Toshiba-Sony Cell processor look similar to the architecture of GPUs,” says Johnson. “These designs could be the next-generation technology for real-time, data-processing applications. Our work with GPUs will help us evaluate and deploy the emerging devices.”

The Cell processor, which is a crossover GPU-CPU chip, is scheduled to hit the gaming market soon. But the Cell might also prove to be useful in defense and security computing environments. The scientists of GAIA — just like the gamers — are eager to test and scale its limits.

For further information contact John Johnson (925) 424-4092 ([email protected]) or Sheila Vaidya (925) 423-5428 ([email protected]).

Credit must be given to the University of California, Lawrence Livermore National Laboratory, and the Department of Energy under whose auspices the work was performed, when this information or a reproduction of it is used.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This