Daresbury Laboratory Benchmarks Multi-Core Chips

By Christopher Lazou

December 16, 2005

On December 6th and 7th about 250 people attended the 16th Machine Evaluation Workshop at EPSRC Daresbury Laboratories, UK. This workshop is a leading UK national event dedicated to distributed, high performance scientific computing. The principle objective is to encourage close contact between the research communities from the Mathematics, Chemistry, Physics, Engineering and Materials Programmes of EPSRC and the major vendors of mid-range computing systems, workstations, servers, software and peripherals.

Most of the 25 presentations were from vendors, describing their own products, on topics such as hardware, compilers, graphics, storage and networking. They focused on cluster solutions, based on commodity chips, interconnect networks and associated file storage systems. An important component of the workshop is the availability of systems for benchmarking evaluation purposes.

There were exhibitions and presentations from eighteen companies, keen to promote their ready-made products including those based on AMD Opteron and the Intel Itanium 2 processor. A strong presence of AMD Opteron and Intel Bensley, early dual-core systems, as well as various models of blade products, were on display and available for demonstrations. 

Ron Bell, from the UK Atomic Weapons Establishment (AWE), started the workshop with a presentation titled: “The AWE HPC Benchmark”. This was an interesting talk in that it discussed AWE's benchmark based on workload profile characterization and projections of future user requirements. They are currently running an IBM P3 system with 1856 processors rated at 2.88 Tflop/s peak performance. The requirement is to buy a new system delivering 10 to 25 times greater performance than their current system, which translates to a system in the range of 30 to 70 Tflop/s peak performance.

The benchmark contains a combination of codes from the whole AWE user community, physicists, engineers and material scientists, weighted to reflect their workload. It measures both capacity (throughput) and capability (turnaround).

The physicists contributed plasma physics and hydrodynamic codes plus visualization. The engineers codes for solving explicit and implicit (100 MDOFs) models with as much as 30 million elements. From the Materials group, two molecular dynamics codes were used, DL-Poly from Daresbury and WARP from Sandia.

Ron went on to cogently discuss the pitfalls of benchmarking when dealing with systems of differing speeds. He gave an example of two systems A and B with system A twice as fast as B and B having twice the number of processors than A. He then presented the usual scenario where capacity can be achieved by partitioning system B into two, running both partitions in parallel giving the illusion that both systems have the same throughput.
 
He went on to say: “The answer is not system A, gives better turnaround times but has the same throughput. The correct answer is system A has higher throughput than system B because system B must scale further in order to achieve the required job turnaround and system B may be unable to give the required turnaround for some capability jobs. In conclusion, don't compare N-way on A with N-way on B. Adjust N so that turnaround is about the same on A and B”.

In running the AWE benchmark they found that: “There is a problem with measuring throughput of capability jobs. At modest levels of parallelism, scalability is largely unaffected by interconnect. Scalability is intrinsic to application. The ratio between systems is constant with PE count. At higher PE counts where performance turns over, relative throughput varies wildly and becomes meaningless.”

Also, it was very difficult to perform the capability test. There were very few benchmark data available, up to the turn over point. To measure the job turnaround at a point just before turn over, the best the system can do irrespective of number of PEs, became difficult. Generally, a system, scoring better on this measure would need more PEs to achieve it – so throughput was probably lower. For this reason, capacity and capability figures were presented as separate measures, with a warning about the large uncertainties on the capability figures.

Ron Bell wanted to be able to say things like: “System A has 10 percent higher throughput than system B for modestly parallel work, but system B has better scalability – so capability jobs show 20 percent higher throughput on B. If we assume half of the system will be dedicated to capability jobs, then System B gives more overall throughput”. This was not apparent from the benchmark results.

Ron Bell concluded: “The benchmark was too complex for vendors. The throughput test is not really useful as a benchmark. Multiple jobs don't usually interfere much. There was inadequate I/O on benchmark systems, but this should be excellent as an acceptance test. Capability was very difficult to quantify”.

In short, Ron Bell was saying that for large-scale applications (30 million elements), time to completion must be heavily weighted in the selection criteria of a system. Capability systems can always deliver capacity where capability is often beyond capacity systems, but capability is difficult to measure accurately as vendors do not usually have systems of that size for benchmarking.

Of course other factors often dominate the selection of large-scale systems. For example, one trade-off is price/performance; another, are perceived hidden benefits from having the same system as your collaborators. One suspects it depends on how one constructs the Total Cost of Ownership (TCO) integral. For my money, I would also include ease of use and Mean Time Between Failures (MTBF), especially with systems with tens or hundred thousand processors.

Chris Brown gave the “IBM HPC systems perspective” talk emphasizing that one size does not fit all. He explained that in addition to the IBM P5 line, IBM is exploring the low-power Cell processor technology. The speaker claimed that because IBM is a large company with a strong track record of innovation and in control of component developments, it is able to leverage these innovations across the whole design spectrum. For example, take the game processor developed from Cell technology for the large consumer market, add a couple of floating point pipes and what one has is the Blue Gene. Both the Blue Gene and the MareNostrum systems, based on the Power PC 970 FX processor, are examples of experimental technologies. IBM believes that next generation chip designs are focusing on high performance/power consumption ratios and that semiconductor power trends are driving future systems. With hundreds of thousands of processors, software tool makers will be challenged to create an easy to use development environment. I may also add, reliability, such as MTBF.

Jörg Stadler from NEC HPC Europe described the NEC SX-8 vector parallel system whose raison d'être is capability supercomputing. NEC is committed to continue to develop products at the top end of HPC using the latest technologies. Their next generation system is likely to be heterogeneous with a strong vector processing component. He also explained that they are offering total solutions to customers, from high computation to data management infrastructure, based on their super-scalar Itanium 2 system. As an example, he cited the DKRZ climate center in Germany where the computation element is delivered by the NEC SX-6 and the data management of some 220 terabytes using the NEC TX7 and Oracle. They also deliver tailor-made scalar systems in collaboration with other vendors. The 100 Tflop/s scalar system for the Tokyo Institute of Technology, where NEC is acting as the integrator, but collaborating with ClearSpeed, AMD and Sun Microsystems, was cited as an example.     

As in previous years, the Daresbury Benchmark results were of great interest. These consisted of a plethora of distributed memory benchmark results, compiled by Martyn Guest and his team from Daresbury, from many systems including the latest products from vendors using their latest two core chips. The Daresbury benchmark suite, used to obtain these results, consists of many computational chemistry kernel codes, molecular dynamics, Quantum Monte Carlo, Jacobi Solver, STREAM – measured sustainable memory bandwidth in HPC (TRIAD), the Ab Initio molecular electronic structure package, GAMESS-UK, and the parallel molecular dynamics benchmark, DL_POLY. The results from SPECfp2000, SPECInt2000 and other well-known benchmarks were also presented.

Martyn Guest gave a similar talk as previous years, this time the results were normalised against an Opteron – the AMD Opteron 852/2600 (EKO2.2) – see table below. Martyn emphasised that single processors are complex and often provide misleading results as they are almost always used in n-way nodes. If they are dual-core, use both processors; if quad-cores, use all four so that interactions of cache memory and communications are accounted in the performance measure. For example, in the case of the 32-way IBM P4 this normalizes availability of L3 cache memory, which reduces performance compared to using all L3 cache for one CPU. This applies to other vendors' products too. When more cores are added on a chip the interconnect fabric for transfer rates (bandwidth) to L3 cache need to be increased proportionately to handle the extra computational power from the extra cores. Otherwise, memory paths, if shared with the additional cores, are likely to degrade the overall system performance.

Note that the results presented below, reflect performance in computational chemistry and this does not necessarily reflect the performance of these computers in other application domains. Also, the results given are not normalized on price/performance, so no specific value-for-money comparisons are made or implied.

Looking at SPECfp 2000 relative to the HP RX5670 Itanium 2 (1.5GHz), the SGI Altix 3700 Bx2/1600-9M Itanium 2 system is 26 percent faster and the IBM e-Server P5 570/1900 is 22 percent faster, while the HP RX4640 Itanium 2/1600-9M is 29 percent faster. These systems deliver around 40 percent of their peak performance on the SPECfp 2000 metric.
 
The benchmark results compiled by the Daresbury team indicate that the Intel Itanium 2 systems are still the bright stars of today, but the IBM e-server P5 570/1900 is not far behind. They fare well as far as performance is concerned compared to other super-scalar chips, although one can detect a trend towards convergence. Performance of a particular chip tends to vary on different benchmarks and the version of compiler is run on, but one can see a pattern emerging. To give you a flavor of the benchmarks, here are some of the results, normalized on the AMD Opteron 852/2600 using the PathScale compiler EKO2.2 (for the Matrix-97, Chemistry Kernels, GAMES-UK and DL-POLY benchmarks):

The AMD Opteron 852/2600 (EKO2.2)     (100)
The AMD Opteron 852/2600 (PGI5.2)        (88)
The Dell PowerEdge 1850/3600 2MBL2      (72)
Sun Fire V40z 2.2GHz                                 (76)
The Bull NovaScale 4040 Itanium 2/1500     (98)
SGI Altix3700 Itanium 2/1500                      (98)
SGI Altix3700 Itanium 2/1600                    (105)
The HP RX5670 Itanium 2/1500-H              (99)
The HP RX1620 Itanium 2/1600-L             (106)
The HP RX1620 Itanium 2/1600-H             (121)
The IBM p-Series 690/1700                         (80)
The IBM e-Server p5 575/1500                    (78)
The IBM e-Server P5 570/1900                  (105)

Note that the HP compiler delivers about 15 percent improvement compared to its Linux counterpart on the HP RX1620. A similar pattern is also evident on the AMD Opteron 852/2600, when using PathScale's EKO (Ver.2.2) and the Portland Group's PGI (Ver.5.2) Fortran compilers.

A more interesting table was presented showing scaling performance when using multi-cores on a chip. In general they scaled reasonably well. There were few exceptions. One major bottleneck identified is the bandwidth imbalance from L2 to L3 cache, where the transfer rate remained as for one core, but has to deal with bandwidth requirements of two cores.

The rest of the workshop consisted of presentations from vendors, with a strong contingent from the FPGAs fraternity, Mitrion, Celoxica and Nallatech, and from users sharing their experience and presentations from a number of companies, specializing in providing tailored system solutions from commodity components on demand. Instead of buying pre-packaged products from traditional vendors, a contract is placed with a small computer integration company, such as ClusterVision or Streamline, to built a cluster from favored chips and an interconnect network, such as Gigabit Ethernet, QsNet, InfiniBand or Myrinet.

The presentations focused on cluster systems affordable by academic departments and associated organizations, which make the departmental computing environment. For example, Fiona Burgess and Michal Harasimiuk from ClearSpeed, presented their new co-processor, the CSX600, suitable for offloading compute-intense math library functions from serial CPUs. Michal claimed that: “Each CSX600 co-processor can sustain 25 Gflop/s on DGEMM, while consuming only 5 watts of power. The CSX600, now available, is a SIMD array of processors. Each PE is a VLIW processor with a multiple execution floating point adder and floating point multiplier in both 32-bit and 64-bit IEEE754 standard.

A two-chip board delivers 50 Gflop/s peak and uses 10 watts in total. It has up to one gigabyte shared DRAM for local processing. A dual CSX600 using PCI-X, 20 watts/card accelerator board gives 100 Gflop/s peak on DGEMM, BLAS, LAPACK, GROMACS, CHARMM NAND and so on. It is suitable for computation in finance, Monte Carlo and Generic math, providing transparent acceleration for packages such as MATLAB, Mathematica, NAG, Maple and entire applications in biochemistry.

There are some very positive trends in multi-core chip developments, but the workshop also had some surprises. These are too sensitive to be printed here. For those of you keen to add the latest 'gizmos' to your facilities, remember the Latin adage: “caveat emptor.” As the season of goodwill is upon us: Wishing you all, Seasons Greetings and a peaceful Happy New Year.

(Brands and names are the property of their respective owners)
Copyright: Christopher Lazou, HiPerCom Consultants, Ltd., UK., December 2005.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This