Modelling Fusion on HPCx

By Nicole Hemsoth

December 16, 2005

P J Knight, C M Roach, A Thyagaraja, D J Applegate and N Joiner, UKAEA Fusion, Culham Science Centre

HPCx is the name of the UK's National High Performance Computing Service. It is a large IBM POWER5 cluster whose configuration is specifically designed for high-availability capability computing. The Engineering and Physical Sciences Research Council (EPSRC) is overseeing the project, on behalf of the UK scientific community. HPCx is a joint venture between EPCC (Edinburgh Parallel Computing Centre) at the University of Edinburgh and the Daresbury Laboratory of the Council for the Central Laboratory for the Research Councils (CCLRC). IBM (UK) Ltd has been chosen as the hardware supplier for the six-year duration of the project.

The late Nobel Laureate, Hans Bethe demonstrated that thermonuclear fusion powers the stars. In July of this year Cadarache in France was chosen to be the site for ITER (http://www.iter.org/), the world's largest machine dedicated to research into the production of energy from controlled thermonuclear fusion. ITER is designed to demonstrate that safe, clean electricity can be produced economically. When ITER begins to operate in about ten years it will aim to demonstrate that fusion can fulfil the energy requirements of the modern world without concomitant greenhouse gas production or need for disposal of long-lived radioactive wastes.

Achieving controlled thermonuclear fusion of light elements on Earth is not easy. In ITER and machines like it, a hot, ionised gas called a plasma must be confined for several seconds in a carefully designed 'magnetic bottle' well away from material walls. For fusion to take place in the deuterium-tritium fuel mixture (these are heavier isotopes of hydrogen, with one and two extra neutrons respectively), the temperature (>=100*10^6 degrees Celsius) must exceed by ten to twenty times that prevailing in the core of the Sun. The high temperature is needed to overcome the 'Coulomb barrier' to nuclear reactions between the deuterium and tritium nuclei. The magnetic fields (~5 Tesla) must be large enough to contain the plasma at a few atmospheres so that sufficiently many reactions can take place and the total power produced by them is significantly larger (>10 times) than that needed to heat the plasma. This plasma confinement approach leads to a doughnut-shaped device known by its Russian acronym, tokamak (toroidal, axisymmetric magnetic chamber).

The United Kingdom Atomic Energy Authority (UKAEA) carries out fusion research for the UK Government and the European Atomic Energy Community (EURATOM) at the Culham Science Centre in Abingdon, where research in experimental and theoretical physics and engineering tasks in support of ITER is undertaken. Our group's effort is devoted to the problem of understanding electromagnetic turbulence in plasmas, and its undesirable effects on enhancing energy losses (called 'anomalous transport') of the plasma far above those due to collisional processes.

Global tokamak turbulence calculations present truly 'grand challenges' to the most powerful computers in the world such as HPCx and the Earth Simulator in Japan. A whole range of linear and non-linear instabilities are involved. The problems are similar in complexity to those encountered in geophysical fluid dynamics and climatology, both in the enormous range of length and timescales involved and the number of dynamical degrees of freedom modelled. We are, in effect, attempting to 'arithmetize' plasma climatology in a tokamak with a supercomputer! We employ two complementary approaches to plasma turbulence modelling at Culham. The kinetic approach focuses on the microscopic spatial scale, exemplified by the Larmor gyration radius of charged particles in the magnetic field, whilst the 'continuum/fluid' method deals with more global scales right up to machine size and confinement time-scale, much longer than the turbulence timescale.

GS2 – a gyrokinetic code

Kinetic theories model the plasma as a collection of charged particles (~10^20) moving in response to self-consistently generated electromagnetic fields. Kinetic equations and Maxwell's equations are solved self-consistently to obtain the time evolution of the particle distribution functions in 6D (real space and velocity space) for each plasma species. Fortunately, in strongly magnetised tokamak plasmas it is possible to average the kinetic equation over the extremely rapid Larmor orbit motions to yield the 5D 'gyrokinetic equation'. This equation faithfully describes short perpendicular wavelength plasma turbulence, which is strongly suspected to underlie anomalous transport in magnetised plasmas.

GS2 [1] is a mature leading-edge plasma turbulence code, developed in the United States using F90 and MPI, to solve the non-linear gyrokinetic equation for each plasma species. GS2 is being used to study the microstability properties of spherical tokamak (ST) plasmas, including plasmas from the Culham MAST (Mega-Amp Spherical Tokamak) experiment. ST geometry presents a challenge for plasma theory, and has important influences on microinstabilities. GS2's domain is a 'flux-tube' sub-region of the tokamak plasma. Domain decomposition is performed in 5D, with care to minimise communications in the directions of the fastest processes along the magnetic field. GS2 has been widely exploited on supercomputers (including HPCx), and with judicious choice of the calculation grids scales efficiently with large numbers of processors.

Linear gyrokinetic calculations suggest the existence of key microinstabilities which may ultimately be responsible for anomalous transport of heat and particles. Magnetic field perturbations are found to be particularly important in the ST, and some instabilities are found to tear the equilibrium magnetic field [2]. Fully non-linear calculations are required to predict turbulence saturation levels, and to make contact with experimental observations.

Non-linear GS2 simulations on HPCx have calculated the saturated state of electron temperature gradient (ETG) driven drift wave turbulence in MAST plasmas. These calculations required 256 processors running for approximately 8 hours on HPCx, and predict a level of electron heat transport which is, remarkably, comparable to that measured. This result is of considerable interest as ETG turbulence has previously been dismissed as unimportant! Our recent HPCx non-linear ETG simulations for MAST [2], have revealed that radially extended 'streamer' structures in the electrostatic potential enhance electron heat transport. In the future it will be important to assess the robustness of these simulations to various approximations, and to find ways of 'tweaking' the plasma equilibrium to reduce the transport levels. We are also presently trying to understand the complicated physics mechanism that drives the instabilities that tear the equilibrium magnetic field lines. Even linear calculations of these modes are challenging computationally, and it will be important to make non-linear simulations to assess the level of transport arising from these modes.

CENTORI – a fluid code

Fluid models contain less detailed physics than gyrokinetics, although many observational phenomena on larger scales are within their ambit. These models represent a tokamak plasma using eight or nine 3D fields varying in space and time. Non-linear balance equations of particle number, momentum and energy for each species and a reduced set of Maxwell equations are derived by suitable averaging of the more exact kinetic description. CENTORI, the global fluid code being developed for use on HPCx, permits calculations of tokamak turbulence evolution and transport at reasonable resolutions (well beyond current experimental techniques but below those possible with gyrokinetics) for times approaching the typical confinement times.

CENTORI is designed to take full advantage of the parallel architecture of HPCx and Beowulf clusters. It is based on a highly successful serial Fortran 77 code [3] CUTIE (also developed at Culham by two of the authors), which described many experimental observations qualitatively with relatively low resolution calculations. CENTORI improves upon many of the approximations used in CUTIE, and employs a parallel implementation (MPI + FORTRAN 90) of the mixed semi-implicit pseudo-spectral/finite-difference method. Parallel supercomputing enables us to achieve much higher resolution than possible with CUTIE. CENTORI solves strongly coupled non-linear parabolic differential equations related to the well-known advection diffusion equation. A plasma-based coordinate system, based on the nested toroidal magnetic flux surfaces is used. The three spatial, plasma-based coordinates are: psi – labelling the nested flux surfaces, is a measure of the radial distance from the plasma centre to its edge; theta – the poloidal angle within a flux surface; and zeta – the toroidal angle along the torus. A predictor-corrector, semi-implicit finite difference scheme in psi is used with fast Fourier transforms in the two angular directions.

Early runs of CENTORI on HPCx have produced promising physical insights. Some typical outputs from the code, relating to UKAEA Fusion's own MAST experiment, already mentioned, demonstrate qualitatively the suppression of turbulence by the presence of a local bulk plasma flow in the toroidal direction. (The phenomenon is known as 'transport barrier formation' and is observed in many tokamaks.) Results were collected from another simulation, where CENTORI was used to model Alfvén wave propagation (so called after their Swedish discoverer Alfvén ) in the vicinity of saddle points ('X-point nulls') in the poloidal magnetic field. In this simulation (a two-dimensional, linear problem) we used 992 processors on HPCx with unprecedented resolution, and the results were in agreement with non-trivial exact solutions of the MHD wave equations [4]. Runs of this kind (only possible on HPCx!) have provided understanding of wave phenomena involved in particle acceleration and the possible loss mechanisms in X-point geometries.

The parallel solvers in CENTORI are being optimised with valuable code development support from Joachim Hein and Lorna Smith at EPCC as part of our EPSRC-HPCx contract. When fully developed and tested, CENTORI will be a powerful capability computing code. Global simulations with it on HPCx will provide new insights into both tokamak physics and plasma astrophysics.

Conclusions

A judicious combination of GS2 and CENTORI on HPCx and its successors will contribute to new understanding of existing tokamaks like JET (Joint European Torus), MAST and ultimately ITER. Theory and computation are expected to play an essential role in support of experiment and observation in finding a viable new solution to the world's energy problems and in understanding plasma phenomena in the cosmos.

Acknowledgements

This work was funded jointly by the United Kingdom Engineering and Physical Sciences Research Council and by EURATOM. The HPCx computer time was provided under EPSRC grant GR/ S43559/01. We would like to thank Bill Dorland for supplying GS2 and Joachim Hein and co-workers at EPCC for assisting in parallelization of CENTORI.

References

[1] http://gs2.sourceforge.net/
[2] C.M. Roach et al, to appear in Plasma Physics and Controlled Fusion (2005).
[3] M.R. de Baar et al. Phys. Rev. Letts, 94, 035002 (2005).
[4] K.G. McClements et al, 31st European Physical Society Conf. Proceedings, London, (2005).

This article originally appeared in the Autumn 2005 issue of Capability Computing, the newsletter for the HPCx community.  For more information about HPCx, visit http://www.hpcx.ac.uk/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ABB Upgrades Produce Up to 30 Percent Energy Reduction for HPE Supercomputers

June 6, 2020

The world’s supercomputers are currently allied in a common goal: defeating COVID-19. To analyze the billions upon billions of molecules that might produce helpful therapeutics (or even a vaccine), an unimaginable amou Read more…

By Oliver Peckham

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This