Modelling Fusion on HPCx

By Nicole Hemsoth

December 16, 2005

P J Knight, C M Roach, A Thyagaraja, D J Applegate and N Joiner, UKAEA Fusion, Culham Science Centre

HPCx is the name of the UK's National High Performance Computing Service. It is a large IBM POWER5 cluster whose configuration is specifically designed for high-availability capability computing. The Engineering and Physical Sciences Research Council (EPSRC) is overseeing the project, on behalf of the UK scientific community. HPCx is a joint venture between EPCC (Edinburgh Parallel Computing Centre) at the University of Edinburgh and the Daresbury Laboratory of the Council for the Central Laboratory for the Research Councils (CCLRC). IBM (UK) Ltd has been chosen as the hardware supplier for the six-year duration of the project.

The late Nobel Laureate, Hans Bethe demonstrated that thermonuclear fusion powers the stars. In July of this year Cadarache in France was chosen to be the site for ITER (http://www.iter.org/), the world's largest machine dedicated to research into the production of energy from controlled thermonuclear fusion. ITER is designed to demonstrate that safe, clean electricity can be produced economically. When ITER begins to operate in about ten years it will aim to demonstrate that fusion can fulfil the energy requirements of the modern world without concomitant greenhouse gas production or need for disposal of long-lived radioactive wastes.

Achieving controlled thermonuclear fusion of light elements on Earth is not easy. In ITER and machines like it, a hot, ionised gas called a plasma must be confined for several seconds in a carefully designed 'magnetic bottle' well away from material walls. For fusion to take place in the deuterium-tritium fuel mixture (these are heavier isotopes of hydrogen, with one and two extra neutrons respectively), the temperature (>=100*10^6 degrees Celsius) must exceed by ten to twenty times that prevailing in the core of the Sun. The high temperature is needed to overcome the 'Coulomb barrier' to nuclear reactions between the deuterium and tritium nuclei. The magnetic fields (~5 Tesla) must be large enough to contain the plasma at a few atmospheres so that sufficiently many reactions can take place and the total power produced by them is significantly larger (>10 times) than that needed to heat the plasma. This plasma confinement approach leads to a doughnut-shaped device known by its Russian acronym, tokamak (toroidal, axisymmetric magnetic chamber).

The United Kingdom Atomic Energy Authority (UKAEA) carries out fusion research for the UK Government and the European Atomic Energy Community (EURATOM) at the Culham Science Centre in Abingdon, where research in experimental and theoretical physics and engineering tasks in support of ITER is undertaken. Our group's effort is devoted to the problem of understanding electromagnetic turbulence in plasmas, and its undesirable effects on enhancing energy losses (called 'anomalous transport') of the plasma far above those due to collisional processes.

Global tokamak turbulence calculations present truly 'grand challenges' to the most powerful computers in the world such as HPCx and the Earth Simulator in Japan. A whole range of linear and non-linear instabilities are involved. The problems are similar in complexity to those encountered in geophysical fluid dynamics and climatology, both in the enormous range of length and timescales involved and the number of dynamical degrees of freedom modelled. We are, in effect, attempting to 'arithmetize' plasma climatology in a tokamak with a supercomputer! We employ two complementary approaches to plasma turbulence modelling at Culham. The kinetic approach focuses on the microscopic spatial scale, exemplified by the Larmor gyration radius of charged particles in the magnetic field, whilst the 'continuum/fluid' method deals with more global scales right up to machine size and confinement time-scale, much longer than the turbulence timescale.

GS2 – a gyrokinetic code

Kinetic theories model the plasma as a collection of charged particles (~10^20) moving in response to self-consistently generated electromagnetic fields. Kinetic equations and Maxwell's equations are solved self-consistently to obtain the time evolution of the particle distribution functions in 6D (real space and velocity space) for each plasma species. Fortunately, in strongly magnetised tokamak plasmas it is possible to average the kinetic equation over the extremely rapid Larmor orbit motions to yield the 5D 'gyrokinetic equation'. This equation faithfully describes short perpendicular wavelength plasma turbulence, which is strongly suspected to underlie anomalous transport in magnetised plasmas.

GS2 [1] is a mature leading-edge plasma turbulence code, developed in the United States using F90 and MPI, to solve the non-linear gyrokinetic equation for each plasma species. GS2 is being used to study the microstability properties of spherical tokamak (ST) plasmas, including plasmas from the Culham MAST (Mega-Amp Spherical Tokamak) experiment. ST geometry presents a challenge for plasma theory, and has important influences on microinstabilities. GS2's domain is a 'flux-tube' sub-region of the tokamak plasma. Domain decomposition is performed in 5D, with care to minimise communications in the directions of the fastest processes along the magnetic field. GS2 has been widely exploited on supercomputers (including HPCx), and with judicious choice of the calculation grids scales efficiently with large numbers of processors.

Linear gyrokinetic calculations suggest the existence of key microinstabilities which may ultimately be responsible for anomalous transport of heat and particles. Magnetic field perturbations are found to be particularly important in the ST, and some instabilities are found to tear the equilibrium magnetic field [2]. Fully non-linear calculations are required to predict turbulence saturation levels, and to make contact with experimental observations.

Non-linear GS2 simulations on HPCx have calculated the saturated state of electron temperature gradient (ETG) driven drift wave turbulence in MAST plasmas. These calculations required 256 processors running for approximately 8 hours on HPCx, and predict a level of electron heat transport which is, remarkably, comparable to that measured. This result is of considerable interest as ETG turbulence has previously been dismissed as unimportant! Our recent HPCx non-linear ETG simulations for MAST [2], have revealed that radially extended 'streamer' structures in the electrostatic potential enhance electron heat transport. In the future it will be important to assess the robustness of these simulations to various approximations, and to find ways of 'tweaking' the plasma equilibrium to reduce the transport levels. We are also presently trying to understand the complicated physics mechanism that drives the instabilities that tear the equilibrium magnetic field lines. Even linear calculations of these modes are challenging computationally, and it will be important to make non-linear simulations to assess the level of transport arising from these modes.

CENTORI – a fluid code

Fluid models contain less detailed physics than gyrokinetics, although many observational phenomena on larger scales are within their ambit. These models represent a tokamak plasma using eight or nine 3D fields varying in space and time. Non-linear balance equations of particle number, momentum and energy for each species and a reduced set of Maxwell equations are derived by suitable averaging of the more exact kinetic description. CENTORI, the global fluid code being developed for use on HPCx, permits calculations of tokamak turbulence evolution and transport at reasonable resolutions (well beyond current experimental techniques but below those possible with gyrokinetics) for times approaching the typical confinement times.

CENTORI is designed to take full advantage of the parallel architecture of HPCx and Beowulf clusters. It is based on a highly successful serial Fortran 77 code [3] CUTIE (also developed at Culham by two of the authors), which described many experimental observations qualitatively with relatively low resolution calculations. CENTORI improves upon many of the approximations used in CUTIE, and employs a parallel implementation (MPI + FORTRAN 90) of the mixed semi-implicit pseudo-spectral/finite-difference method. Parallel supercomputing enables us to achieve much higher resolution than possible with CUTIE. CENTORI solves strongly coupled non-linear parabolic differential equations related to the well-known advection diffusion equation. A plasma-based coordinate system, based on the nested toroidal magnetic flux surfaces is used. The three spatial, plasma-based coordinates are: psi – labelling the nested flux surfaces, is a measure of the radial distance from the plasma centre to its edge; theta – the poloidal angle within a flux surface; and zeta – the toroidal angle along the torus. A predictor-corrector, semi-implicit finite difference scheme in psi is used with fast Fourier transforms in the two angular directions.

Early runs of CENTORI on HPCx have produced promising physical insights. Some typical outputs from the code, relating to UKAEA Fusion's own MAST experiment, already mentioned, demonstrate qualitatively the suppression of turbulence by the presence of a local bulk plasma flow in the toroidal direction. (The phenomenon is known as 'transport barrier formation' and is observed in many tokamaks.) Results were collected from another simulation, where CENTORI was used to model Alfvén wave propagation (so called after their Swedish discoverer Alfvén ) in the vicinity of saddle points ('X-point nulls') in the poloidal magnetic field. In this simulation (a two-dimensional, linear problem) we used 992 processors on HPCx with unprecedented resolution, and the results were in agreement with non-trivial exact solutions of the MHD wave equations [4]. Runs of this kind (only possible on HPCx!) have provided understanding of wave phenomena involved in particle acceleration and the possible loss mechanisms in X-point geometries.

The parallel solvers in CENTORI are being optimised with valuable code development support from Joachim Hein and Lorna Smith at EPCC as part of our EPSRC-HPCx contract. When fully developed and tested, CENTORI will be a powerful capability computing code. Global simulations with it on HPCx will provide new insights into both tokamak physics and plasma astrophysics.

Conclusions

A judicious combination of GS2 and CENTORI on HPCx and its successors will contribute to new understanding of existing tokamaks like JET (Joint European Torus), MAST and ultimately ITER. Theory and computation are expected to play an essential role in support of experiment and observation in finding a viable new solution to the world's energy problems and in understanding plasma phenomena in the cosmos.

Acknowledgements

This work was funded jointly by the United Kingdom Engineering and Physical Sciences Research Council and by EURATOM. The HPCx computer time was provided under EPSRC grant GR/ S43559/01. We would like to thank Bill Dorland for supplying GS2 and Joachim Hein and co-workers at EPCC for assisting in parallelization of CENTORI.

References

[1] http://gs2.sourceforge.net/
[2] C.M. Roach et al, to appear in Plasma Physics and Controlled Fusion (2005).
[3] M.R. de Baar et al. Phys. Rev. Letts, 94, 035002 (2005).
[4] K.G. McClements et al, 31st European Physical Society Conf. Proceedings, London, (2005).

This article originally appeared in the Autumn 2005 issue of Capability Computing, the newsletter for the HPCx community.  For more information about HPCx, visit http://www.hpcx.ac.uk/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respective Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This