A Theoretical Breakthrough Inspired by Experiment

By Nicole Hemsoth

January 6, 2006

Need to understand the details of how a molecule is put together? Want to see the effects of the intricate dance that its electrons do to make a chemical bond? Try blowing a molecule to bits and calculate what happens to all the pieces. That's the approach taken by an international group of collaborators from the University of California at Davis, universities in Spain and Belgium, and the Chemical Sciences Division of the Department of Energy's Lawrence Berkeley National Laboratory.

When a hydrogen molecule, H2, is hit by a photon with enough energy to send both its electrons flying, the two protons left behind – the hydrogen nuclei – repel each other in a so-called Coulomb explosion. In this event, called the double photoionization of H2, the paths taken by the fleeing electrons have much to say about how close together the two nuclei were at the moment the photon struck, and just how the electrons were correlated in the molecule.

Correlation means that properties of the particles like position and momentum cannot be calculated independently. When three or more particles are involved, calculations are notoriously intractable, both in classical physics and quantum mechanics. In the 16 December, 2005 issue of Science the researchers report on the first-ever complete quantum mechanical solution of a system with four charged particles.

The groundbreaking calculations were inspired by earlier experiments on the photofragmentation of deuterium (heavy hydrogen) molecules, performed at beamline 9.3.2 of Berkeley Lab's Advanced Light Source (ALS) in 2003 by a group of scientists from Germany, Spain, and several institutions in the United States. The experimenters were led by Thorsten Weber, then with the ALS and now at the University of Frankfurt.

“If you were trying to do this experiment and you didn't have access to the Advanced Light Source and a COLTRIMS experimental device” – a sophisticated, position-sensitive detector for collecting electrons and ions – “you'd just fire photons at a random sample of hydrogen molecules and measure the electrons that came out,” said Thomas Rescigno of Berkeley Lab's Chemical Sciences Division, one of the authors of the Science paper. “What made this experiment special was that they could measure what happened to all four particles. From their precise positions and energy they could reconstruct the state of the molecule when it was hit.”

Weber presented early experimental data at a seminar attended by Rescigno, William McCurdy of the Lab's Chemical Sciences Division, who is also a professor of chemistry at the University of California at Davis, and Wim Vanroose, a postdoctoral fellow at Berkeley Lab who is now at the Department of Computer Science at the Katholieke Universiteit Leuven in Belgium.

“Thorsten teased us with his results, some of which were extremely nonintuitive. What was remarkable was that very small differences in the internuclear distance” – the distance between the two protons at the moment the photon was absorbed – “made for radical differences in the ways the electrons were ejected,” said Rescigno.

“When I saw the results of the molecular experiments, in which small changes in the internuclear distance produced large and unexpected changes in the electron ejection patterns, it immediately occurred to me that the differences were because of the molecule's effects on electron correlations,” said McCurdy.

McCurdy had recently been working with Fernando Martín, a professor of chemistry at the Universidad Autónoma de Madrid, merging computational techniques developed by Martín with a method McCurdy, Rescigno, and others had developed for calculating systems of three charged particles. Martín and McCurdy extended these methods to the helium atom, a system that, technically speaking, has four charged particles. But because the helium atom's two protons are bound together in the nucleus, the calculated distribution of electrons ejected by the absorption of an energetic photon tend to be quite symmetrical around the nucleus, with most pairs flying off in opposite directions.

The picture can look quite different for a hydrogen or deuterium molecule, in which a plot of the likelihood that electrons will be ejected at certain angles groups into lobes that grow increasingly asymmetric as the bond length between the two hydrogen atoms grows longer. McCurdy read this as the effect of the bond length on the correlation of the shared electrons. Indeed, this is what Weber and his colleagues speculated when they published the results of their deuterium photofragmentation studies in Nature in 2004.

Rescigno pointed out a fly in the ointment, however – namely that instead of being caused by electron correlations, large differences in ejection patterns caused by small differences in internuclear distance “could just be kinematics.”

In other words, the scattered electrons might be sharing some of the potential energy stored by the Coulomb repulsion between the two like-charged protons. The closer together these two nuclei are at the moment the photon breaks up the molecule, the more energy goes into the Coulomb explosion, some of which could be transmitted to the outgoing electrons and affect their flight paths.

How to decide between kinematic effects or electron correlations? The experimental results could not address the question, since all the data were collected at the same photon energy; whether the electrons were acquiring additional kinetic energy was unknown.

“Because we were doing computations, we could do experiments the experimenters couldn't do,” said Vanroose. “We had much more flexibility to fix the conditions.” 

Using supercomputers at the Department of Energy's National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab, at UC Berkeley, and in Belgium, Vanroose was able to rerun the hydrogen molecule experiments “in silico,” this time with different photon energies, distributed so that the outgoing electrons always shared exactly the same kinetic energy no matter what the distance between the protons at the moment of photon absorption.

The results turned out to be remarkably similar in all cases. Even when kinetic energy made no contribution, the electrons flew off in patterns determined by the length of the bond between the nuclei. Therefore the differences were due almost entirely to the way the electrons were correlated in their orbital paths around the molecule's two nuclei.

Martín of UA Madrid sees the new calculations, which are a complete numerical solution for the Schrödinger equation of the photoionization of H2, as “just the beginning. Probing the complicated physics of electron correlations will lead the way to more comprehensive methods combining theory and experiment to address some of the most pressing problems in chemistry.”

Vanroose credits their success to day-in, day-out collaboration between top-notch theorists and experimenters at Berkeley Lab, “who are talking to each other all the time. The ability of experimentalists to call on the latest computational techniques is good for both; it's why we're two years ahead of other theorists in this field.”
  
To Rescigno, the latest results show that “what began as blue-sky physics theory is now connecting with the nuts and bolts of practical experiment.” 

“These large-scale theoretical calculations, stimulated by the need to interpret novel experiments at the ALS, are already stimulating new experiments and establishing a new line of inquiry at Berkeley Lab,” said McCurdy. 

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. For more information visit http://www.lbl.gov.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire